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Abstract

We study asymptotic learning when the decision maker is ambigu-

ous about the precision of her information sources. She aims to esti-

mate a state and evaluates outcomes according to the worst-case sce-

nario. Under prior-by-prior updating, ambiguity regarding informa-

tion sources induces ambiguity about the state. We show this induced

ambiguity does not vanish even as the number of information sources

grows indefinitely. We characterize the limit set of posteriors and find

that the decision maker’s asymptotic estimate of the state is generi-

cally incorrect. We show that even a small amount of ambiguity may

lead to large estimation errors. Among other applications, we analyze

a setting in which the decision maker learns from observing others’

actions.
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1 Introduction
Consider agents who rely on multiple information sources to learn about a

payoff-relevant state. A voter turns to poll results and advertising to gauge

a politician’s competence and agenda, while an investor leverages the re-

ports of various analysts to project the future returns of a stock. A common

assumption in the literature is that the decision maker has beliefs about

the quality of her information sources and that these beliefs are correctly

specified. In such cases, asymptotic learning is successful. While these

assumptions seem reasonable, forming beliefs may often not be straight-

forward. For example, consider a prospective customer consulting online

reviews before making a purchase decision. She may not have particular

beliefs about the quality of reviewers because they are being consulted for

the first time. Despite the prevalence of such settings, little is known about

learning in these environments. This paper addresses the gap.

We analyze asymptotic learning when the decision maker lacks particu-

lar beliefs about her information sources. We study a decision maker who

estimates a state by minimizing a loss function. She observes functions of

multiple unbiased signals. The state and the signals are jointly normally

distributed, but the decision maker does not know the signals’ precisions

— that is, the inverse of their variances. The decision maker is not proba-

bilistically sophisticated; instead, she is ambiguous regarding the precision

of each information source and perceives them to lie in a bounded interval.

Each assignment of precisions to information sources pins down a belief of

the decision maker, a joint distribution over signals and the state. Thus, an

interval of perceived precisions induces a set of beliefs. We assume the de-

cision maker updates her beliefs prior by prior. Concretely, upon observing

information, she updates each belief in her belief set according to Bayes’

rule. In doing so, the agent obtains multiple posterior distributions for the

state. Thus, ambiguity about precisions induces ambiguity about the state.

Finally, she takes a robust approach and evaluates the expected loss accord-

ing to the worst case across all posteriors.

This setup encompasses a broad range of environments. By modeling
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observables as functions of signals, we account for various scenarios, such

as the decision maker directly observing unbiased signals, or monitoring

the actions of other agents. Moreover, our main insights go through beyond

certain assumptions mentioned in the previous paragraph.1 To the best

of our knowledge, this is the first paper to show how ambiguity aversion

disrupts classical inference from large samples.

Our first result shows the induced ambiguity concerning the state does

not vanish asymptotically. That is, the posterior beliefs of the decision

maker do not converge to a single distribution as the number of informa-

tion sources grows. We characterize this asymptotic set of posteriors. As

in standard Bayesian learning, the variance of each posterior converges to

zero. However, different beliefs about precisions lead to different weighting

of signals and, consequently, to different posterior means. For example, for

any realization of signals, the agent’s belief set contains a belief that assigns

higher precisions to signals with high realizations and lower precisions oth-

erwise. In this case, the posterior mean converges to a relatively high value.

Similarly, there exist beliefs that lead to a relatively low posterior mean.

Considering the set of all beliefs generates an interval of posterior means.

The set of asymptotic posteriors is the set of Dirac measures over values in

that interval. Importantly, this set is independent of the objective of the

decision maker.

Our second result characterizes the decision maker’s asymptotic esti-

mate of the state. Her decision problem can be interpreted as a zero-sum

game against nature. Initially, the decision maker receives information and

chooses the estimate that minimizes her expected loss. Subsequently, na-

ture chooses the precision of each source in a manner that maximizes the

decision maker’s loss. In doing so, nature affects the agent’s posterior dis-

tribution. We show that, asymptotically, this is equivalent to nature choos-

ing posterior means in the interval described in the previous paragraph.

If the agent chooses a relatively low value within the interval, nature will

maximize her loss by choosing the highest value possible, and vice versa.

1See Section 6 for a detailed discussion of these extensions.
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To minimize the maximal loss, the agent chooses an estimate that renders

nature indifferent between choosing the highest or lowest value from the

interval of posterior means.

We show that, in our setting, asymptotic learning typically fails. That is,

the agent’s estimate is not consistent. Thus, we complement the vast litera-

ture on model misspecification, which obtains similar results by assuming

the true parameter values are not in the support of the decision maker’s

prior distribution. By contrast, we maintain the assumption that the true

precisions are in the set of beliefs the agent deems possible. Surprisingly,

we show the agent’s estimate is typically inconsistent even in cases in which

a misspecified Bayesian decision maker would learn the truth.

These results have several implications. First, we show that initial condi-

tions exist in which even a small amount of ambiguity can lead to arbitrarily

large losses and estimation errors. These situations arise when the initial set

of possible signal precisions is relatively low. Therefore, the magnitude of

ambiguity and estimation error need not be proportional; a minor degree

of ambiguity can have a major impact in the quality of asymptotic learning.

Second, we show the decision maker can be worse off even if she per-

ceives all of her information sources as more informative. Consider two

decision problems, a and b, in which the agent directly observes unbiased

signals but has different intervals of perceived precision. We show that even

if the lowest precision in a is higher than the highest precision in b, the de-

cision maker may be better off under b. To carry out this comparison, we

study how the initial ambiguity about precisions maps into induced ambi-

guity about the state. In particular, we show that the interval of posterior

means is determined by the ratio between the highest and lowest possi-

ble perceived precisions. Because the length of this interval pins down the

agent’s loss, her welfare is monotonic in this ratio, regardless of the level of

perceived precisions.

Lastly, we explore an application in which the decision maker learns

from the actions of others instead of directly observing signals. In this con-

text, an ambiguity averse econometrician observes choices made by Bayesian
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decision makers who attempt to estimate a payoff-relevant state given their

private information. She aims to estimate this state but does not know the

precision of their private signals. For a concrete example, consider a health-

care official assessing the prevalence of a disease in a region. She relies on

hospital reports to do so but is not sure about the quality of their data col-

lection protocols. We show the econometrician generically fails to aggregate

information. We characterize how she may over- or underreact to the infor-

mation contained in the observed actions as a function of her prior beliefs

and the true level of precisions.

Related Literature Our paper follows the literature on learning under

ambiguity. Epstein and Schneider (2007) introduce a framework where an

agent seeking to learn the state of the world lacks confidence in their infor-

mation about the environment. They consider the maxmin expected utility

model (MEU) following Gilboa and Schmeidler (1989) and a general updat-

ing rule for ambiguity that encompasses both prior-by-prior (full Bayesian)

updating (Pires, 2002) and maximum likelihood updating (Gilboa and Schmei-

dler, 1993). Epstein and Schneider (2008) study an application to a finan-

cial market where the representative agent observes one signal with am-

biguous precision and updates her beliefs prior by prior. They show how

this ambiguity affects reactions to information and the asset price. Follow-

up papers extend these results by incorporating ambiguity about the mean

of the signals and by considering equilibrium portfolio choices as well as

general utility functions (Illeditsch, 2011; Gollier, 2011; Condie and Gan-

guli, 2017). In this paper, we consider a similar setup as Epstein and Schnei-

der (2008) but focus on whether ambiguity vanishes and whether the agent

can estimate the state correctly when the number of signals she observes

goes to infinity. 2

Of relevance is also the literature on single-agent misspecified learn-

2Al-Najjar (2009) show that individuals who use frequentist models might compen-
sate for the scarcity of data by limiting inference to a statistically simple family of events,
which leads to statistically ambiguous beliefs. In their setting, such ambiguity vanishes in
standard continuous outcome spaces as data increases without bounds.
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ing, which is another possible driving force for the failure of asymptotic

learning. In this literature, a misspecified agent typically has a prior that

assigns probability 0 to (a neighborhood of) the true model. Berk (1966)

and Shalizi (2009) show that with exogenous information, under mild con-

ditions, the agent’s beliefs converge, although not to the true state. Other

works focused on settings where the signals can be affected by the actions

of the agent and are hence endogenous. Nyarko (1991) and Fudenberg et al.

(2017) provide examples in which the convergence of beliefs fails. Similar

to our setup, Heidhues et al. (2019) considers the convergence of beliefs

and actions with a Gaussian prior and signals. Frick et al. (2020b), Esponda

et al. (2019), and Fudenberg et al. (2020) focus on the convergence results

in general models with finite actions. Our paper differs from the existing

work in three ways. First, the agent in the misspecified learning literature is

a Bayesian learner, whereas, in our setup, the decision maker holds multi-

ple beliefs and adopts prior-by-prior updating. Second, the decision maker

in our model is not misspecified in the sense that the true model is con-

tained in her set of priors. Third, we show that in our setting, even when

information is exogenous, as in Berk (1966) and Shalizi (2009), the belief

set diverges almost surely.

Our paper also relates to the robust statistics literature (Huber, 2004).

Roughly speaking, robust statistics are statistics that produce good per-

formance even with deviations from assumptions on the data generation

process. Cerreia-Vioglio et al. (2013) highlight the close relation between

decision-making under ambiguity, akin to the approach in this paper, and

robust statistics, and characterize conditions under which the two approaches

are equivalent. However, the problems studied in the robust statistics lit-

erature typically differ from the ones studied in this paper. For instance,

Giacomini and Kitagawa (2020) and Giacomini et al. (2019) propose new

tools for Bayesian inference in set-identified models to reconcile the asymp-

totic disagreement between Bayesian and frequentist inferences.3 By con-

3There are also recent papers on misspecified social learning such as Bohren (2016),
Bohren and Hauser (2019), Bohren and Hauser (2021), Frick et al. (2020a) and Frick et al.
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trast, our focus is on whether information aggregation is successful as the

number of sources grows without bounds. Even in cases of point-identified

models, ambiguity does not vanish in our setup because the precisions of

different information sources are allowed to be different. Finally, this re-

sult is in contrast to Marinacci (2002), where ambiguity vanishes because

all observations are drawn from the same ambiguous distribution.

2 Setup
A decision maker aims to learn the state of the world, θ ∈ Θ := R, and has

access toN information sources, I =: {1, ...,N }. It is common knowledge that

the state θ is normally distributed, N
(
µ, 1

ρµ

)
. We call ρµ > 0 the precision of

the prior. Each information source i ∈ I produces a signal si = θ + εi , where

the noise εi is normally distributed with mean 0 and precision ρi > 0, that

is, εi ∼ N
(
0, 1
ρi

)
.4 We assume that the state and all noises are independent

of each other given precisions.

The actual precisions of the information sources are drawn i.i.d. from

some distribution function G on [ρ,ρ] with ρ > ρ > 0. The decision maker

in our model is ambiguous about the precisions of her information sources.

In particular, she knows that the precision of each information source lies

in [ρ,ρ], but she cannot form a probabilistic belief about it. Rather, the

decision maker forms conjectures about the precision of any information

source i. We denote the decision maker’s conjectured precision as ρ̂i ∈ [ρ,ρ].

Note that the decision maker is not misspecified because she does not deem

the actual precisions as impossible ex-ante. This observation follows from

the assumption that the actual precision ρi of information source i lies in

the perceived precision set [ρ,ρ]. The assumption that actual precisions

are i.i.d. is not fundamental. Rather, it provides a sensible benchmark by

making the asymptotic empirical distribution of signals deterministic.

(2021).
4Our framework is suitable for analyzing biased signals as well. However, in that setup,

issues of identifiability arise, which are not the focus of this paper. When these issues do
not arise, our main insights remain unchanged.
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The decision maker doesn’t necessarily observe the realized signals di-

rectly. The observable for each information source i is a function a, which

maps the realized signal, si , and the precision of information source i to a

number a(si ,ρi) observed by the decision maker. We assume that for each

precision ρi , the observable a(si ,ρi) is invertible as a function of si . De-

note the realized observable as ai and the inverted function for signals as

sa(ai ,ρi). Given the observable ai and the conjectured precision ρ̂i , the de-

cision maker’s conjectured signal is ŝi = sa(ai , ρ̂i), which might be different

from the actual realized signal si . Moreover, conditional on the realized

state θ, the actual observables are i.i.d. according to the distribution func-

tion F on R where

F(a) =
∫

[ρ,ρ]
Fρ

(
sa(a,ρ)

)
dG(ρ),

with Fρ ∼ N
(
θ, 1

ρ

)
for each ρ ∈ [ρ,ρ]. Later in this paper, we will discuss

several different observables. Among them, the unbiased signal sources

might be directly observable — a(si ,ρi) = si . We also study the case in which

the decision maker can observe estimates of Bayesian agents based on their

common prior and private signals — a(si ,ρi) =
ρisi+ρµµ
ρi+ρµ

.

Belief Updating Denote the profile of precisions as ρN := (ρ1, ...,ρN ), the

profile of conjectured precisions as ρ̂N := (ρ̂1, ..., ρ̂N ), and the profile of ob-

servables as aN := (a1, ..., aN ), and, for each n ≥ 1, the set of distributions

over Rn as ∆(Rn). Following Epstein and Schneider (2007) and Epstein and

Schneider (2008), we define La(ρ̂N ,θ) ∈ ∆(Rn) as the likelihood function for

the profile of observables, which is the conditional distribution for observ-

ables given conjectured precisions ρ̂N and the realized state θ. Then the

set of likelihood functions of the decision maker can be represented by LaN ,

where

LaN = {La(ρ̂N ,θ) ∈ ∆(RN ) : ρ̂N ∈ [ρ,ρ]N , θ ∈ R}.

Note that to calculate the likelihood function of observables, one can

first calculate the likelihood function of signals, which is just a multivariate
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normal distribution with independent marginals, and then make use of the

one-to-one mapping between signals and observables given the profile of

conjectured precisions.

We assume the decision maker adopts full Bayesian updating (Pires,

2002) to derive posteriors using the prior and the set of likelihood func-

tions LaN . In other words, given the realized profile of observables aN , and a

vector of conjectured precisions ρ̂N , the posterior over the state P a
N (aN , ρ̂N ) ∈

∆(R) is obtained by applying Bayes’ rule.5 Then, the posteriors of the deci-

sion maker can be represented by the following set:

Pa(aN ) =
{
P a
N (aN , ρ̂N ) ∈ ∆(R) : ρ̂N ∈ [ρ,ρ]N

}
.

After seeing the profile of observables, the decision maker chooses an

estimate g of the state θ to minimize a loss function u(g − θ). We assume

u : R → R is strictly convex and minimized at 0. Given multiple beliefs,

the decision maker is a maxmin expected utility (MEU) maximizer follow-

ing Gilboa and Schmeidler (1989), and she evaluates her estimate based on

the worst possible belief. This preference might be a result of the decision

maker being ambiguity averse or the decision maker’s intention to derive a

robust upper bound for the expected loss. That is, the decision maker’s ob-

jective is to minimize the maximal expected loss across all distributions in

the set of posteriors. She picks an estimate g to solve the following min-max

problem:

min
g

max
p∈Pa(aN )

{
Ep

[
u(g −θ)

]}
.

To maintain tractability, we made several assumptions. In Section 6, we

discuss how our results depend on these assumptions. We highlight that

our belief-updating rule is the crucial assumption needed for our results.

In the rest of the paper, we focus on the limiting case in which the num-

5Under this assumption, for each conjectured precision, the decision maker updates as
if she were certain the conjecture is correct. Alternatively, we could allow the decision
maker to update her beliefs given a conjectured non-degenerate distribution about the
precision of each signal. Under such conjectures our qualitative results still go through;
however, expressions become cumbersome.
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ber of information sources N goes to infinity.6

3 Asymptotic Beliefs
In this section, we characterize how the agent’s posterior set behaves as the

number of observables grows large. In particular, recall that for any N , the

decision maker observes aN . Given a profile of conjectured precisions ρ̂N ,

the decision maker’s posterior belief is P a
N (aN , ρ̂N ). We are interested in the

asymptotic behavior of the agent’s posterior set: Pa(aN ). Thus, we define

the limit set of posteriors:

Pa
∞(a) = {P : ∃ρ̂ ∈ [ρ,ρ]∞ s.t. P = lim

N→∞
P a(aN , ρ̂N )}

Note Pa
∞(a) is defined as the set of limits of posteriors that can be gen-

erated by some profile of precisions. That definition is silent about which

posterior beliefs converge. In fact, many non-converging sequences of pos-

terior beliefs exist, but, as Section 4 will make clearer, these sequences are

immaterial for our discussion.

To characterize this set, we start by interpreting the optimization prob-

lem described in Section 2 as a zero-sum game between the decision maker

and nature. Under this interpretation, after signals are realized, the deci-

sion maker chooses an estimate for the state to minimize her loss function.

Subsequently, with knowledge of the estimate, nature is free to choose, for

each signal, any precision within the uncertainty set of the decision maker.

The decision maker’s objective is then to guarantee the lowest loss condi-

tional on the fact that nature acts after her and to her detriment.

3.1 Quadratic Loss with Observable Signals

To help build intuition and as a rough sketch of the proof of our more gen-

eral results, we describe and partially analyze the special case in which the

loss function is quadratic, and the realized signals are observable; that is,

6In a previous version of the paper, we studied the finite N case, which we omit for
brevity.
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u(g − θ) = (g − θ)2 and a(si ,ρi) = si . In other words, the decision maker

has access to N unbiased and normally distributed signals si = θ + εi , with

εi ∼ N
(
0, 1
ρi

)
. Recall the true ρi are unknown to the decision maker, who

entertains an interval of perceived precision [ρ,ρ]. The decision maker’s

objective is to minimize the maximal mean-squared errors across all dis-

tributions in the set of posteriors. We denote by sN the vector of the N

observed signals. She picks an estimate g to solve the following problem:

min
g

max
p∈Ps(sN )

{
Ep

[
(g −θ)2

]}
.

Due to the properties of the quadratic loss function, the above optimiza-

tion problem can be simplified to one that only depends on the conditional

mean and variance of the state, which can be calculated in closed form due

to the assumption of joint normality. Denote them as E[θ|sN , ρ̂N ] =
ρ̂N ·sN+ρµµ
ρ̂N ·1N+ρµ

and V[θ|sN , ρ̂N ] =
(
1− ρ̂N ·1N

ρ̂N ·1N+ρµ

)
1
ρµ

respectively. Then, the objective of the de-

cision maker becomes

min
g

max
ρ̂∈[ρ,ρ]N

{(
g −E[θ|sN , ρ̂N ]

)2
+V[θ|sN , ρ̂N ]

}
.

By changing the precision of each signal, nature affects both the squared

bias and the variance. It determines variance by choosing the sum of pre-

cisions across signals, and, importantly, it affects the posterior mean by as-

signing different precisions to different signal realizations. From the defi-

nition of the posterior variance, we see that as long as each signal is some-

what informative (ρ > 0), as the number of available signals N increases,

the posterior variance converges to 0. Hence, the more signals the decision

maker receives, the more nature focuses on affecting the decision maker’s

loss function via the squared bias. In the extreme case, in which N → ∞,

for any choice of precisions that nature may consider, the posterior variance

is equal to 0, and nature utilizes the square bias as its only lever. We next

characterize nature’s behavior when N →∞, where nature’s choice of what
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precision to attribute to which signal exclusively affects the posterior mean.

Definition 1. An assignment ρ̂ : R∞→ [ρ,ρ]∞ is order-preserving if si ≤ sj =⇒
ρ̂i ≤ ρ̂j for all i, j ∈ N; and it is order-reversing if si ≤ sj =⇒ ρ̂i ≥ ρ̂j , for all
i, j ∈ N. An assignment is a threshold assignment if it is order-preserving or
order-reversing and Im(ρ̂) ∈

{
ρ,ρ

}∞
Lemma 1. Let ρ̂∗ solve maxρ̂∈[ρ,ρ]∞

(
g − E[θ|s, ρ̂]

)2
for some g ∈ R. Under ob-

servable signals, ρ̂∗ is a threshold assignment.

Nature finds it optimal to assign precisions to signals to maximize the

squared bias. Intuitively, the way to do so is to either maximize or minimize

the posterior mean: if the decision maker’s estimate g is relatively low, na-

ture finds it optimal to maximize the posterior mean, and vice versa. The

intuition for Lemma 1 can be derived by analyzing the expression of the

posterior mean when N goes to infinity. In that case, given an observed em-

pirical distribution of signals, F, the expression for the posterior mean can

be written as: E[θ|s, ρ̂] =
∫
sρ̂(s)dF(s)∫
ρ̂(s)dF(s)

. Consider nature’s choice to maximize

this expression while keeping the same expected value of conjectured pre-

cisions
∫
ρ̂(s)dF(s) = c ∈ [ρ,ρ]. Because c pins down the denominator of the

expression for the posterior mean, nature chooses an assignment to maxi-

mize
∫
sρ̂(s)dF(s). To do so, nature assigns high-valued signals high preci-

sions and low-valued signals low precisions, thereby moving the posterior

mean towards higher signal realizations. Using the extreme precisions ρ

and ρ is the best way to achieve this, therefore justifying the optimality of

threshold strategies. Naturally, an analogous strategy is optimal to mini-

mize the posterior mean.

To summarize this example, as the number of signals goes to infinity,

nature focuses on affecting the agent’s bias by strategically assigning pre-

cisions to signal realizations. Asymptotically, this is the only way nature

can affect the agent’s loss, as variance goes to zero regardless of the decision

maker’s conjecture. Finally, nature can implement this bias-maximizing be-

havior by applying threshold strategies: monotonic precision assignments

that use only extreme precisions.
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3.2 Ambiguity Does Not Vanish

When signals are observable, and the loss function is quadratic, we argued

in the previous section that (i) nature can restrict attention to threshold

strategies, and (ii) as the number of signals goes to infinity, the set of poste-

riors converges to a set of degenerate distributions. We now show these two

insights generalize.

First, we provide sufficient conditions on observables that guarantee

nature can still restrict attention to threshold strategies. Recall that un-

der general observables, the agent cannot observe the realized signal but

rather has to backtrack those signals based on their conjectured precision.

In particular, given conjectures precision ρ̂i and observable realization ai ,

the agent believes the signal realization is ŝi = sa(ρ̂i , ai). In contrast to the

case of observable signals, when associating a particular precision with an

observable realization, the agent changes his interpretation of the signal re-

alization. The following assumption ensures the effect of this association

does not break the monotonicity between observables and inverted signals

that is required for simple threshold strategies to be optimal.

Assumption 1. Define the weighted inverted signal function w(ρ,x) ≡ ρsa(ρ,x)

and assume that w is affine in ρ and strictly supermodular.

This assumption allows for a broad range of observables relevant to sev-

eral economic applications. The two examples described in the setup — di-

rectly observable unbiased signals and observable estimates from Bayesian

agents with private information — satisfy this assumption. In the context

of financial markets, the demand of CARA investors for an asset with value

θ also satisfies Assumption 1. In particular, when the unbiased signals

are the investor’s private information, their demand for the risky asset is

a(si ,ρi) = 1
α (ρisi + ρµµ), where α is their absolute risk aversion. The follow-

ing result generalizes Lemma 1.

Lemma 2. Let ρ̂∗ solve maxρ̂∈[ρ,ρ]∞ u
(
g −E[θ|a, ρ̂]

)
for some g ∈ R. Under As-

sumption 1, ρ̂∗ is a threshold assignment.
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We now address the asymptotic behavior of posteriors. As previously

discussed, each strategy of nature corresponds to a plausible belief in the

agent’s belief set. In the previous section, as the number of observables

went to infinity, we argued that nature loses the ability to influence the pos-

terior variance as aggregate information becomes infinitely precise. How-

ever, by assigning precisions to signals, nature could still affect the agent’s

bias. With general loss functions, higher moments of the posterior distribu-

tion are payoff-relevant for the agent. Nevertheless, the above rationale is

preserved: all moments but the posterior mean become irrelevant asymp-

totically, and, in the limit, nature can only command the interval of poste-

rior means. As a consequence, the set of posterior beliefs converges to an

interval of degenerate distributions regardless of the loss function. Recall

that F is the actual distribution over observables given θ.

Theorem 1. Let Assumption 1 hold. Define:

m =
ρ
∫ m
−∞ sa(x,ρ)dF(x) + ρ

∫∞
m

sa(x,ρ)dF(x)

ρF(m) + ρ (1−F(m))
, m =

ρ
∫ m
−∞ sa(x,ρ)dF(x) + ρ

∫∞
m

sa(x,ρ)dF(x)

ρF(m) + ρ (1−F(m))
.

Then, for almost all sequences, a, of realized observables,

1. For all sequences ρ̂ ∈ [ρ,ρ]∞,

m ≤ lim
N→∞

infEPN (aN ,ρ̂N )[θ|aN , ρ̂N ] ≤ lim
N→∞

supEPN (aN ,ρ̂N )[θ|aN , ρ̂N ] ≤m.

2. The limit set of posteriors is a set of degenerate distributions independent
of s:

P∞(s) = {δb :m ≤ b ≤m}.

Theorem 1 formalizes the observation above. It starts by establishing

that for any precision assignment, posterior means are bounded by two real

numbers: m, m. These numbers formalize the notion of maximal and min-

imal posterior means that nature can achieve asymptotically. The second

part of the theorem shows that any converging posterior approximates a
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degenerate distribution and that distribution may have any mean between

the boundaries m and m. Finally, Theorem 1 characterizes the values of

these boundaries. For example, m is generated by the following strategy of

nature: give the highest precision to signals higher than m and the lowest

precision to values below it. By giving more weight to high signals, nature

moves the posterior mean up. The highest such posterior mean is expressed

by the fixed point m.

For an intuition on the formula for m, suppose we start with a threshold

m that is lower than such expected value. Then, increasing the threshold to

m′ > m has two effects. First, by assigning all values in (m,m′) to low pre-

cisions, the precision-weighted sum of signals is reduced. When m′ is close

to m, this effect is roughly proportional to the marginal signal, m. Second,

the precision-weighted mass of signals is reduced with more signals at low

precision. This effectively increases the value of all the inframarginal sig-

nals, so it is proportional to the precision-weighted average signal. Because

the expected value was higher than the threshold to begin with, the second

effect dominates the first, and the expected value of signals increases. This

process can be repeated until the marginal signal equals the average.7

The fundamental consequence of Theorem 1 is that induced ambiguity

about the state does not vanish asymptotically. Rather, the agent still enter-

tains a wide range of values for the state θ even when he has access to an

arbitrarily large number of informative observables. This finding is in stark

contrast to quantifiable risk. In fact, a secondary consequence of the result

above is that quantifiable risk completely disappears even in our setting: all

the limit posteriors are degenerate around their means. In the next section,

we show how the presence of ambiguity in the limit set of posteriors affects

the optimal estimate of the agent.
7This parallels the argument that the average cost curve is minimized when it intersects

the marginal cost curve.
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4 Asymptotic Estimate
In this section, we characterize the asymptotic behavior of the decision

maker. In particular, we are interested in analyzing how ambiguity with

regard to the decision maker’s information sources affects her ability to cor-

rectly estimate the state as the number of observables increases. Recall that,

for each realization of observables aN , her estimate g∗(aN ) minimizes her

loss function, considering the worst-case posterior in Pa(aN ). Because ob-

servables and loss functions are arbitrary, obtaining an explicit solution to

g∗(aN ) for finite N is not an easy task, which makes a direct attempt at char-

acterizing the solution intractable. To solve this problem, we leverage on

Theorem 1. The main result of this section characterizes the asymptotic

estimate by showing the following limit exchange holds.

lim
N→∞

argmin
g

max
p∈Pa(aN )

Ep
[
u(g −θ)

]
= argmin

g
max
p∈P∞(a)

Ep
[
u(g −θ)

]
.

Theorem 1 states that P∞(a) = {δm :m ∈ [m,m]} for almost all realizations

of observables. The limit swap above suggests that, as N grows, the opti-

mal estimate converges to the estimate of an agent who does not know the

mean of θ but wants to guarantee the minimal loss in the interval [m,m].

This observation greatly simplifies the characterization: the asymptotic be-

havior of the estimate is pinned down by an extremely simple optimization

problem. In this problem, the agent only cares about how biased her esti-

mate is in the worst-case scenario. Recall that her loss is larger the further

from the true state her estimate is. If her estimate is too far from m, she

has a large utility loss in the worst case, in which the state is actually m. A

symmetric argument holds for m. Therefore, she guarantees minimal loss

by being indifferent between these two extreme possible values of the state.

This intuition is formalized in the next result.

Theorem 2. g∗(sN )
a.s.−−→ g∗, where g∗ is the unique solution to u(g∗−m) = u(g∗−

m).

Although intuitive, this result depends on the non-trivial exchange of
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limits mentioned above. A priori, it is not clear that the limit swap holds.

First, the limits of optimizers of a sequence of optimization problems are

not guaranteed to coincide with the optimizers of the limit problem. Sec-

ond, not all distributions in the set Pa(aN ) converge. Indeed, sequences

of precisions always exist such that posterior beliefs diverge. Still, our re-

sult confirms the limit exchange is valid, and the heuristic argument we

gave above goes through formally. We make this argument in two steps,

addressing each of the concerns highlighted above.

The first step is to show the decision maker’s optimization can be ap-

proximated by an optimization that considers only the mean of posterior

distributions asN grows large. For any finiteN , the decision maker’s loss is

clearly affected by higher moments of the posteriors, but because quantifi-

able risk vanishes as the number of observable information sources grows,

the mean progressively becomes the only relevant moment. The second

step relies on an extension of the Glivenko-Cantelli theorem. It provides

the important result that the sequence g∗(aN ) is bounded. Recall, from part

1 of Theorem 1, that non-converging posteriors are bounded. Thus, intu-

itively, N by N , the payoff obtained by a non-converging sequence can be

bounded by the payoff of two converging sequences so that restricting at-

tention to the converging ones turns out to be without loss of generality. As

a consequence, non-converging beliefs are innocuous: we can characterize

the asymptotic behavior of the agent’s estimate without addressing them.

We prove these two steps are sufficient to guarantee the convergence of g∗.

Theorem 2 shows the asymptotic estimate is typically incorrect. To il-

lustrate, recall that [m,m] in Theorem 1 are independent of the particular

choice of the loss function. Rather, they are determined by the initial am-

biguity and the observable function a. By contrast, the asymptotic estimate

is a consequence of the behavior of the loss function, u, on the interval of

posterior means [m,m]. This finding suggests the decision maker estimates

the state correctly asymptotically only in the knife-edge case in which her

loss function coincides with the observable function in a particular way.

Moreover, in that case, perturbing either of these functions would again
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lead to an incorrect limit estimate. This result is particularly striking when

compared to the behavior of a Bayesian agent who knows the precision of

each source.8 Because observables map one-to-one to signals conditional

on precisions, a Bayesian’s asymptotic estimate would be equal to the state,

regardless of the loss function.

4.1 Observable signals: Loss Symmetry

We now focus on the case in which signals are directly observable — a(si ,ρi)−
si . A loss function is symmetric if u(x) = u(−x) for any real number x. We

show that when signals are observable, the symmetry of the loss function

plays a prominent role in the asymptotic estimate. Indeed, by Theorem 2,

we have that, under symmetric losses, g∗ = m+m
2 . Because signals are observ-

able, Theorem 1 states that m and m are defined by:

m =
ρ
∫ m
−∞xdF(x) + ρ

∫∞
m
xdF(x)

ρF(m) + ρ (1−F(m))
, m =

ρ
∫ m
−∞xdF(x) + ρ

∫∞
m
xdF(x)

ρF(m) + ρ (1−F(m))
.

Normality implies the real distribution of signals F is symmetric around

the true state θ. Thus, in this case, the decision maker estimates the state

correctly. The next result formalizes this relationship between symmetry

of the loss function and consistency of the estimate, and proves a partial

converse.

Corollary 1. Fix a state θ. If u is symmetric and signals are observable, g∗(sN )
a.s.−−→

θ for any perceived precision set [ρ,ρ]. If u is not symmetric, then there exist

perceived precision sets [ρ,ρ] and a number g∗ such that g∗(sN )
a.s.−−→ g∗ , θ.

This result highlights that the consistency of the decision maker’s esti-

mate depends on the symmetry of the loss function, as well as the symmetry

of the normal distribution, even under observable signals.

8We could also consider the comparison with a Bayesian agent who does not know the
precision of each information source but rather entertains a distribution over those preci-
sions. The comparison remains the same as long as their statistical model is identified.
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Example: Asymmetric Quadratic Loss Let the loss function be given by:

u(g −θ) =

(g −θ)2 if g ≥ θ

λ(g −θ)2 if g < θ
.

with λ > 0. That is, the decision maker’s may evaluate losses differently de-

pending on whether the state θ is over- or under- estimated. If λ > 1, for

example, the agent is less concerned with losses when she overestimates the

true state, compared to when she underestimates it. Her concern could be

lower for many reasons. For instance, a health official who wants to learn

about the prevalence of a disease in a population would likely lose more

by believing the transmission rate is lower than it really is than believing

it is higher. Conversely, a product developer may face a much harsher per-

sonal loss if they believe demand is higher than it actually is and end up

developing a costly product that fails to be marketed.

Following Theorem 2, we have that the optimal estimate satisfies g∗ =
m+
√
λm

1+
√
λ

. However, as argued in the previous section, observable signals im-

ply m+m
2 = θ. Thus, the agent estimates incorrectly for any λ , 1. In particu-

lar, if λ < 1, her optimal estimate is below the real value of the state: g∗ < θ.

The example above shows how an environment in which an agent estimates

correctly can be easily perturbed so that the agent’s estimate is no longer

consistent.

The above example also highlights that the loss function directly affects

the agent’s estimate, even asymptotically. Note that a Bayesian decision

maker’s posterior belief converges to a Dirac measure on the real state.

Thus, with multiple Bayesian agents, as the available information grows,

regardless of their loss functions, Bayesian agents will agree on the opti-

mal estimation of the state.9 By contrast, our agent’s asymptotic estimate

continues to depend on the particular form of the loss function. Thus, am-

9With observable signals, this result holds true even for misspecified Bayesian agents
who wrongly perceive the precision of the signals. As the amount of information grows
without bounds, their estimates converge to the same value.
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biguity about the precision of information sources might rationalize dis-

agreement even between informed experts who aim to find out the truth,

for example, scientists with access to the same large dataset.

5 Implications
We now turn to different implications of our main result.

5.1 Comparative Statics of Ambiguity

First, we show that contrary to intuition, making all signals more precise is

not necessarily beneficial to the decision maker. For simplicity, we consider

the case of symmetric loss functions and observable signals.

Recall that by Theorem 1, the limit set of posteriors is a set of degenerate

distributions δb with m ≤ b ≤m, where

m =
ρ
∫ m
−∞xdF(x) + ρ

∫∞
m
xdF(x)

ρF(m) + ρ (1−F(m))
, m =

ρ
∫ m
−∞xdF(x) + ρ

∫∞
m
xdF(x)

ρF(m) + ρ (1−F(m))
.

To see how the set of precisions deemed possible by the decision maker

affects the limit set of posterior beliefs, first note m and m only depend on

the fraction of the highest and the lowest possible precisions, instead of

their absolute values, because we can rewrite m and m as

m =

∫ m
−∞xdF(x) + η

∫∞
m
xdF(x)

F(m) + η (1−F(m))
, m =

η
∫ m
−∞xdF(x) +

∫∞
m
xdF(x)

ηF(m) + (1−F(m))
,

where η = ρ
ρ . The following proposition shows that both m and m change

with η monotonically.

Proposition 1. Let η = ρ
ρ ∈ (1,+∞). Under observable signals, m is monoton-

ically increasing in η and m is monotonically decreasing in η. Moreover, when
η→ +∞, we have m→∞ and m→−∞; when η→ 1, we have m−m→ 0.
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In Proposition 1, η = ρ
ρ can be interpreted as the degree of ambiguity in

the set of possible precisions [ρ,ρ]. When more ambiguity exists regarding

precisions of signals ex-ante, the limit set of posteriors also expands, and

hence, ambiguity regarding states is greater ex-post.

Now, we explore the welfare implication of such comparative statics. By

Corollary 1 of Theorem 2, the decision maker always estimates correctly

at the limit when signals are observable. Thus, the optimal utility depends

solely on the size of the limit set of posterior means, that is,m−m. Corollary

2 directly follows from Proposition 1.

Corollary 2. Let u be symmetric. Under observable signals, as η increases, the
decision maker is strictly worse off asymptotically.

Corollary 2 has two possibly counterintuitive implications. First, it im-

plies that if we fix ρ and increase ρ, the decision maker is strictly worse off.

That is, she prefers all of her signals to be imprecise to the possibility of

some signals being more precise. Second, consider two decision problems

with the set of possible precisions given by [ρ
1
,ρ1] and [ρ

2
,ρ2], respectively.

If ρ
2
> ρ1 and η1 = ρ1

ρ
1
< η2 = ρ2

ρ
2
, the decision maker believes that any signal

in the second decision problem is more precise than any signal in the first

one, but she is strictly worse off in the second decision problem. This result

shows that making all signals more precise is not necessarily beneficial to

the decision maker.

5.2 Comparative Statics of Reality

In this section, we study how asymptotic ambiguity and the decision maker’s

estimate change when the distribution of real precisions varies. As in the

previous section, assume signals are directly observable. We fix the per-

ceived precisions ρ and ρ, and we let G and H be distributions of real pre-

cisions generating asymptotic belief boundaries {mG,mG} and {mH ,mH }, re-

spectively.
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Proposition 2. If the distribution of precisions G first-order stochastically dom-
inates H , then the asymptotic belief set is larger for H . Formally, for any state
θ ∈ R,

H �FOSD G =⇒ mH ≤mG ≤mG ≤mH .

In other words, conditional on the state, information sources with lower

precision imply a larger asymptotic ambiguity set for the decision maker.

Intuitively, if the precision of the real information sources is decreased,

the distribution of signals generated by those information sources becomes

more dispersed and less informative for the true state. This enlarges the

set of possible posteriors by thickening the tails of the signal distribution.

Proposition 2 formalizes this idea.

This result has a significant implication for asymptotic estimates. The

asymptotic loss of a Bayesian decision maker is always zero, regardless of

the distribution of precisions, because their belief converges to a degenerate

distribution centered on the true value, θ. Because signals are unbiased, a

Bayesian decision maker has zero loss even if she does not know the dis-

tribution of precisions. However, the distribution of precisions is crucial

for an ambiguous decision maker. While a Bayesian decision maker re-

mains consistently correct, it is possible to find distributions of precisions

that cause the ambiguous agent to make arbitrarily large estimation errors.

Proposition 2 provides a way to construct these large estimation errors: they

require that real signals have sufficiently low precision in addition to an

asymmetric loss function.

Corollary 3. Assume signals are observable and u is the asymmetric quadratic
loss function in Section 4.1 with any λ , 1. For any η > 1 and any constant
C > 0, true distributions of precisions G exist such that |g∗ −θ| > C.

5.3 Aggregating Estimates

Next, we study the problem of an ambiguity-averse econometrician who

aims to estimate the state by aggregating estimates from many Bayesian
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agents. The agents share the same prior but have access to different infor-

mation sources. Although the econometrician knows the prior distribution

of the state, she does not know the precision of the individual sources. This

environment is reasonable in many applications. For instance, consider a

healthcare official assessing the prevalence of a disease in a region. She re-

lies on hospital reports to do so but is not sure about the quality of their

data-collection protocols.

Formally, we assume all agents and the decision maker share the same

prior beliefs about the state θ. As in the previous sections, according to the

prior, θ ∼ N
(
µ, 1

ρµ

)
. Conditional on the realization of θ, agent i receives a

private signal si = θ+εi , where εi ∼N
(
0, 1
ρi

)
. That is, each agent receives an

unbiased signal about the state. We consider the case in which each agent

attempts to estimate the realized value of θ to minimize the mean-squared

error. Given the prior and the private signal, the optimal Bayesian estimate

for agent i would then be a(si ,ρi) = E[θ|ρi , si] =
ρµµ+ρisi
ρµ+ρi

. These actions are

the ones the econometrician has access to. The setup studied in this section

is graphically depicted in Figure 1.

Figure 1: Learning From Actions Setup
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Although each agent knows the precision of their private signal, the

econometrician does not. We once more assume that for each signal, the
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econometrician considers a set of possible precisions
[
ρ,ρ

]
. Because each

action is a convex combination of the private signal si and the mean of the

prior µ, an econometrician who intends to estimate the value of θ, will first

have to transform the actions back to signals. For a conjectured precision

ρ̂i , the recovered signal will be sa (ai , ρ̂i) = ai +
ρµ
ρ̂i

(ai − µ). We again assume

the loss function of the econometrician is quadratic. We start by utilizing

Theorem 1 to characterize the limit set of posteriors of the econometrician

in this example.

Proposition 3. Let a(si ,ρi) =
ρµµ+ρisi
ρµ+ρi

. The boundaries of the limit set of poste-
riors for the econometrician are:

ma =
ρ
∫ ma
−∞xdF(x) + ρ̄

∫∞
ma
xdF(x) + c

ρF(ma) + ρ̄ (1−F(ma))
ma =

ρ
∫ ma
−∞xdF(x) + ρ

∫∞
ma
xdF(x) + c

ρF(ma) + ρ (1−F(ma))
,

where c = (θ −µ)
∫ ρρµ
ρµ+ρdG(ρ).

The boundaries of the limit set of posteriors are defined by a fixed point

similar to the one from the example with observable signals. However, here,

the econometrician has to backtrack realized signals from observed esti-

mates, which leads to an adjustment term c. The next result is a corollary

of Theorem 2.

Corollary 4. Let the loss function be quadratic and a(si ,ρi) =
ρµµ+ρisi
ρµ+ρi

. For al-

most all sequences a and values of the state θ, limN→∞ |g∗(aN )−θ| > 0.

That is, the econometrician’s estimation converges away from the truth

almost surely because inverting from observables to signals depends on the

conjectured precisions and the prior mean. The lack of knowledge about

the former makes distinguishing signal realizations from the prior mean

impossible, thus generating a bias in the recovered signals. The following

assumption allows us to clearly characterize the optimal estimate and to

analyze comparative statics.

Assumption 2. For some ρ∗ ∈ [ρ,ρ], G = δρ∗ .
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Although the econometrician might consider different precisions for each

signal, under Assumption 2, in reality, all signals share the same precision.

This assumption allows us to characterize how the econometrician estimate

differs from the true parameter value. We say the econometrician overre-
acts if |g∗ − µ| > |θ − µ| and underreacts if the inequality is reversed. In other

words, an estimation overreacts to information if it is further from the real

state than the prior mean.

Proposition 4 (Guess Characterization). Let a(si ,ρi) =
ρµµ+ρisi
ρµ+ρi

and the loss

function be quadratic. Under Assumption 2, g(An)
a.s.−−→ g∗, where

1. If µ = θ, g∗ = θ

2. If µ , θ, then ∃ρ̃ < ˜̃ρ such that

• If ρ∗ ≤ ρ̃, then |g∗ −µ| > |θ −µ| and the agent underreacts to observed
actions

• If ρ∗ ≥ ˜̃ρ, |g∗−µ| < |θ−µ| and the agent overreacts to observed actions

• If ρ̃ < ρ∗ < ˜̃ρ, underreacting if |θ−µ| is small and overreacting if |θ−µ|
is large,

where: ρ̃ =
2ρρ

ρ+ ρ
˜̃ρ = ρF (m( ˜̃ρ,µ)) + ρ (1−F (m( ˜̃ρ,µ)) .

Proposition 4 reveals that whether the decision maker over- or underre-

acts depends on the true precision of the signals and possibly the realization

of the state θ. Roughly speaking, the optimal robust estimate corresponds

to the decision maker trying to backtrack the mean of the unobservable sig-

nals from the mean of observed actions. Because signals are unbiased, their

unobservable mean is effectively θ, the state the econometrician aims to es-

timate. When ρ∗ is high, θ is relatively close to the mean of actions because

the agents place a high weight on their unbiased signals when choosing

their actions. However, the econometrician does not know the real preci-

sion, so she backtracks signals from actions using roughly the same method
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regardless of what ρ∗ is. Therefore, the direction of her estimation error

depends on the true precision.

Finally, as the prior precision ρµ changes, the accuracy of the optimal es-

timate is not monotonic. The estimation error is related to how actions are

contaminated by the prior, making it impossible for the agent to disentangle

the effect of the prior from the effect of individual information. When the

prior is extremely imprecise, ρµ ≈ 0, this contamination is minimal, and the

optimal estimate is approximately equal to the one in the observable sig-

nals example: the econometrician estimates correctly. On the other hand,

when the precision of the prior grows to infinity, ρµ → ∞, the agent also

estimates correctly by essentially disregarding the information in the ob-

served actions. For intermediate values, however, Corollary 4 implies that

the estimate is wrong almost surely. In other words, the accuracy of the es-

timate is not monotonic with the precision of the prior: better information

ex-ante does not guarantee a more correct estimate asymptotically.

6 Discussion
To maintain tractability and clarity, our analysis has relied on four main

assumptions: (i) the decision maker adopts full Bayesian updating; (ii) the

decision maker only knows the highest possible and lowest possible preci-

sions of each information source and nothing else; (iii) both the state and

signals follow normal distributions; and (iv) the decision maker is a MEU

maximizer regarding ambiguity. In this section, we briefly argue our main

result — that ambiguity does not vanish asymptotically — remains valid

when we relax the last three assumptions. Hence, the essential assumption

is the updating rule under ambiguity.

Updating Rule. First, we note our result does rely on the updating rule

under ambiguity. An alternative to the full Bayesian updating rule is the

maximum-likelihood rule. Unlike full Bayesian updating, where the deci-

sion maker applies Bayes’ rule to the entire set of priors, the decision maker

with the maximum-likelihood rule would discard priors that do not ascribe

25



the maximal probability to the observed signals and update the remain-

ing priors according to Bayes’ rule. Hence, the maximum-likelihood rule

suggests that ambiguity might vanish even with one single signal. There

are also intermediate cases between full Bayesian and maximum-likelihood

updating. Under the likelihood-ratio updating rule in Epstein and Schnei-

der (2007), asymptotic beliefs will generically coincide with those under

maximum-likelihood, except in the extreme case when this rule coincides

with full Bayesian updating. By comparison, under the relative maximum-

likelihood rule introduced by Cheng (2022), asymptotic beliefs would be a

convex combination of those under full Bayesian and maximum-likelihood

updating, and hence our qualitative results will be maintained.

Information about Precisions Consider the case in which the decision

maker has more information about the precisions of her information sources

ex-ante. Specifically, the decision maker knows two groups of informa-

tion sources exist. Group 1 consists of a fraction α ∈ [0,1] of information

sources with shared high precision ρ, and Group 2 consists of fraction 1−α
with shared low precision ρ. The decision maker does not know which

group a particular information source belongs to.10 Recall the optimization

problem of the decision maker can be interpreted as a zero-sum game be-

tween her and nature. The decision maker’s additional information heavily

restricts nature’s choices on precisions. However, when α ∈ (0,1), nature

can still induce the decision maker to have a relatively high (low) posterior

mean of the state by assigning high signals to Group 1 (Group 2) subject to

the new constraint. Hence, even with the additional restrictions, ambigu-

ity will not asymptotically vanish. The asymptotic estimate of the decision

maker will be correct only with observable signals and a symmetric loss

function and incorrect otherwise.11 Regardless of whether her estimate is

10That is, the true signals are drawn i.i.d., with probability α from Group 1 and 1 − α
from Group 2. Given a sequence of realized signals, the decision maker considers any
sequence in {ρ,ρ}∞ with a fraction α taking the value ρ to be possible.

11Note that if α = 1 or 0, that is, if the decision maker knows that all of her information
sources are precise or imprecise, asymptotic learning is successful, and the decision maker

26



correct, for any α ∈ (0,1), the decision maker faces ambiguity and, thus,

suffers from a loss. Consequently, a decision maker who believes all her in-

formation sources to have minimal precision ρ, is better off than a decision

maker who believes a fraction of her information sources have precision

ρ > ρ.

Distributions We have assumed that the state and signals are normally

distributed. For general distributions, the precision of each signal is no

longer fully captured by the reciprocal of its variance. To extend our model

to other distributions, we can assume the decision maker considers a set of

likelihood functions for each information source. As in the main model,

each allocation of likelihoods to information sources defines a belief for

the agent. Under full Bayesian updating, for each belief, the agent forms

a posterior on the state. The analysis would be less tractable since higher

moments of the posterior no longer necessarily vanish asymptotically, but

we conjecture that as long as two different beliefs result in two different

posterior means, our results that ambiguity does not vanish hold. We leave

the detailed analysis for future research.

Ambiguity Preferences Finally, we can extend the decision maker’s pref-

erence under ambiguity. As long as the ambiguity the decision maker faces

takes the form of a set of beliefs over the state and signals and she adopts the

full Bayesian updating rule upon receiving signals, Theorem 1 still holds.

Indeed, our analysis of asymptotic beliefs does not rely on the specification

of the decision maker’s ambiguity preferences. For instance, the decision

maker might use the α-maxmin expected utility (α-MEU) criterion (Hur-

wicz, 1951), where she considers the weighted average of each act’s worst-

case and best-case expected utility. With this preference, the decision maker

might not be ambiguity-averse.

has asymptotic loss 0 because no ambiguity exists.
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Appendix: Proofs

Proof of Lemma 2

By the form of the objective function, it is easy to see that ρ̂∗ solves maxρ̂[ρ,ρ]∞E[θ|a, ρ̂]

or minρ̂[ρ,ρ]∞E[θ|a, ρ̂] .

Given a distribution of observables, F with density f , recall that

v(ρ̂) ≡ E[θ|a, ρ̂] =
∫
ρ̂(x)ŝ (x, ρ̂(x))∫
ρ̂(x)f (x)dx

f (x)dx

Fix a value M ∈ [ρ,ρ] and consider the problem:

max
ρ̂[ρ,ρ]∞

{v(ρ̂) :
∫
ρ̂(x)f (x)dx =M}

=
1
M

max
ρ̂[ρ,ρ]∞

{
∫
ρ̂(x)ŝ (x, ρ̂(x))f (x)dx :

∫
ρ̂(x)f (x)dx =M}

where the last equality is justified because we are equating the denom-

inator of v to M. By Lagrange multiplier Theorem in Banach spaces, we

obtain that there is λ such that, for each x:

ρ̂(x) ∈ arg max
ρ∈[ρ,ρ]

{ρŝ(x,ρ)−λ(ρ −M)}.

By the supermodularity in Assumption 1, we know the objective func-

tion of each of these optimizations is supermodular, so ρ̂(x) is increasing

with x, according to Topkis’ lemma. By affinity, the solution can be as-

sumed to be an extreme point of the interval [ρ,ρ]. Therefore, for each M

the solution is a threshold. Thus, maximizing over M’s the solution must

also be a threshold. Clearly, the same result holds for minimization, and the

proof is concluded.

Lemma 1 is a special case of Lemma 2 and hence is also proved.

28



Proof of Theorem 1

For any realization of observables aN , let FN ∈ ∆(R) be the empirical distri-

bution of observables. We abuse notation to write sa(aN , ρ̂N ) as the vector

in which the i-th entry is sa(aNi , ρ̂
N
i ). Given a conjecture ρ̂N , we know the

backtracked signals sa(aNi , ρ̂
N
i ) are jointly normal with the state, allowing us

to calculate the posterior mean as:

E[θ|aN , ρ̂N ] =
ρ̂N · sa(aN , ρ̂N ) + ρµµ

ρ̂N ·1+ ρµ
.

Define:

mN ≡ min
ρ̂∈[ρ,ρ]N

E[θ|aN , ρ̂N ] , mN ≡ max
ρ̂∈[ρ,ρ]N

E[θ|sN , ρ̂N ].

The above mN and mN are (random) bounds on posterior means. As-

sume that ρN and ρN are the respective maximizers.

Let ρ̂ : R→ [ρ,ρ] be a precision assignment. Let F be the real distribu-

tion of observables. Again, given a precision assignment, signals are jointly

normally distributed with the state, so we can write the posterior mean as:

E[θ|ρ̂] =
∫
ρ̂(x)sa(x, ρ̂(x))dF(x)∫

ρ̂(x)dF(x)

Finally, let:

m = min
ρ̂:R→[ρ,ρ]

E[θ|ρ̂] , m = min
ρ̂:R→[ρ,ρ]

E[θ|ρ̂].

We start the proof by showing, in Step 1, that the random bounds on

posterior means converge to m and m asymptotically. Then, we show that

the latter are indeed asymptotic bounds of posterior means, proving part 1

of the Theorem in Step 2.

Step 1. mN
a.s.−−→m and mN

a.s.−−→m
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Step 1.1. m =
ρ
∫ m
−∞ sa(x,ρ)dF(x)+ρ

∫∞
m

sa(x,ρ)dF(x)

ρF(m)+ρ(1−F(m))

By the proof of Lemma 2, m is solved by a threshold strategy. We can

then write the optimization that determines it by:

m = argmax
a∈R
{v(a)} ,

where v(a) =
ρ
∫ a
−∞ sa(x,ρ)dF(x)+ρ

∫∞
a

sa(x,ρ)dF(x)

ρF(a)+ρ(1−F(a)) .

The first order condition leads to:

m =
ρ
∫ m
−∞ sa(x,ρ)dF(x) + ρ

∫∞
m

sa(x,ρ)dF(x)

ρF(m) + ρ (1−F(m))

which implicitly defines the value m that solves that maximization. We

show that the objective function is single-peaked, so that the first order

condition is necessary and sufficient. The first derivative of v can be written

as:

v′(a) = (v(a)− a)
(ρ̄ − ρ)f (a)

ρF(a) + ρ̄ (1−F(a))

First, notice that because the second term is positive for all a ∈ R, the sign

of v′ is determined by v(a)−a. This immediately implies v is quasiconcave: if

there is a such that v′(a) > 0, then v′(a) > 0 for all a ≤ a; similarly, if there is a

such that v′(a) < 0, then v′(a) < 0 for all a ≥ a. We prove the second, the first

follows by symmetry. Assume there is a such that v′(a) < 0 and, to obtain a

contradiction, let there be a > a with v′(a) > 0. Since v′ is continuous, there

must be a < b < a with v′(b) = 0, which implies v(b) = b. Choose the smallest

such b > a, so for a ≤ x < b, v′(x) < 0. We then have:

0 = v(b)− b < v(b)− a = v(a)− a+
∫ b

a
v′(x)dx < 0

since v′(a) < 0 implies v(a) < a. We have thus obtained a contradiction.
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Because v is quasiconcave, the first order condition is necessary and suf-

ficient. We now prove that the solution exists and is unique.

As a→ −∞, v(a)→
∫∞
−∞xf (x)dx, as all signals are assigned precision ρ,

leading to uniform weighting. Because we know F has a finite mean, that

implies that we can find a sufficiently small number a such that v(a)−a > 0,

implying v′(a) > 0. Notice that the same should be true for all a ≤ a, so that

v is an increasing function in (−∞, a].
On the other hand, as a → ∞, again we have v(a) →

∫∞
−∞xf (x)dx, this

time because all signals are receiving precision ρ. Then, there is a suffi-

ciently high number a with v(a)− a < 0, so v′(a) < 0 for all a ≥ (a).

Because v′ is continuous, there is a∗ ∈ [a,a] with v′(a∗) = 0, so the solution

exists. We now prove uniqueness. Let a′ satisfy v′(a′) = 0, and let a′ > a∗

without loss of generality. By the quasiconcavity argument above, v′(x) = 0

for all x ∈ [a∗, a′]. Then:

0 = v(a′)− a′ < v(a′)− a∗ = v(a∗)− a∗ +
∫ a′

a∗
v′(x)dx = 0

again, yielding a contradiction. Therefore a∗ is unique. This concludes

Step 1.1 By symmetry, we have the definition of m.

Step 1.2. Approximating mN using a threshold. In this step we show

how to approximate the expectation mN by the expectation generated by a

threshold strategy as N grows large. For any realization of actions, aN , let

FN be the associated empirical distribution of actions. We then define:

m̃N = max
a∈R

ρ
∫ a
−∞ sa(x,ρ)dFN (x) + ρ

∫∞
a

sa(x,ρ)dFN (x)

ρFN (a) + ρ (1−FN (a))

Call the objective function of the problem above Ψ N (a). At the same

time, using the proof of Lemma 2 without assuming the distribution of ob-

servables is non-atomic, we obtain that mN can be obtained by an assign-

ment that is a threshold except for possibly one of the observables receiving
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an intermediate precision. Thus, we can find mN through the alternative

optimization:

mN = max
a,ρ∈[ρ,ρ]

ρ
∫ a−
−∞ sa(x,ρ)dFN (x) + ρsa(a,ρ)(FN (a)−FN (a−)) + ρ

∫∞
a

sa(x,ρ)dFN (x) +
ρµ
N µ

ρFN (a−) + ρ(FN (a)−FN (a−)) + ρ (1−FN (a)) +
ρµ
N


We call the objective function above Ψ̃ N (a,ρ). We next prove supa∈R,ρ∈[ρ,ρ] |Ψ̃ N (a,ρ)−

Ψ N (a)| a.s−−→ 0. To see that, notice that for almost all sequences a, it must be

that supa
{
FN (a)−FN (a−)

}
≤ 1

N . Applying that, the uniform convergence

result is direct.

Denote

Ψ (a) =
ρ
∫ a
−∞ sa(x,ρ)dF(x) + ρ

∫∞
a

sa(x,ρ)dF(x)

ρF(a) + ρ (1−F(a))
.

where F is, again, the true distribution of observables.

Step 1.3. supa∈R |ΨN(a)−Ψ(a)| a.s.−−→ 0 Given the Glivenko–Cantelli theo-

rem, we know the empirical distribution function converges to the true cu-

mulative distribution function uniformly over x, that is,

‖FN −F‖ := sup
x∈R
|FN (x)−F(x)| a.s.−−→ 0.

For each real-valued function v, denote

FN (v) =
∫
vdFN , F(v) =

∫
vdF.

A class of real-valued functions V is defined to be a P-Glivenko-Cantelli class
of functions if

‖FN −F‖V := sup
v∈V
|FN (v)−F(v)| a.s.−−→ 0.
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Recall that the L1(F) norm is defined for real-valued functions such that

‖v‖L1(F) =
∫
|v|dF.

Given two real-valued functions l and u and ε > 0, a ε-bracket [l,u] is

the set of all functions f such that l ≤ f ≤ u and ‖u − l‖L1(F) ≤ ε. The brack-
eting number N (ε,V ,‖ · ‖L1(F)) is the minimum number of ε-brackets needed

to cover V . The following theorem provides a sufficient condition for a P-

Glivenko-Cantelli class.

Theorem 3. ( (Blum, 1955; DeHardt, 1971)) If N (ε,V ,‖ · ‖L1(F)) < ∞ for any
ε > 0, then V is a P-Glivenko-Cantelli class.

Denote

V1 =
{
va1 : va1(x) = ρ1{x≤a} + ρ1{x>a},∀x ∈ R, for some a ∈ R

}
.

V2 =
{
va2 : va2(x) = ρx1{x≤a} + ρx1{x>a},∀x ∈ R, for some a ∈ R

}
.

Easy to see

Ψ N (a) =
FN (va2)
FN (va1)

, Ψ (a) =
F(va2)
F(va1)

.

Then we want to show that V1 and V2 are both P-Glivenko-Cantelli classes.

Note that F is a continuous distribution whose expectation is well-defined,

that is,
∫
|x|dF <∞.

Fix ε > 0. For any a > b, the L1(F)-distance between va1 and vb1 is

‖va1 − v
b
1‖L1(F) = (ρ − ρ)

∫ a

b
dF(x).

Since
∫∞
−∞dF(x) = 1, for M large enough, we can find a finite increasing

sequence {a1, ..., aM} on the extended real line such that a1 = −∞, aM = ∞
and ∫ ai+1

ai

dF(x) =
1

M − 1
≤ ε
ρ − ρ

,∀i = 1, ...,M − 1
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This is feasible as F is a continuous distribution. Then it is easy to show

that the set of ε-brackets {[vai1 ,v
ai+1
1 ] : i = 1, ...,M −1} covers V1 and N (ε,V1,‖ ·

‖L1(F)) ≤M − 1 <∞. Hence V1 is a P-Glivenko-Cantelli class.

Similarly, for any a > b, the L1(F)-distance between va2 and vb2 is

‖va2 − v
b
2‖L1(P ) = (ρ − ρ)

∫ a

b
|x|dF(x).

Since
∫
|x|dF < ∞ and F is continuous, for M ′ large enough, again we can

fine a finite increasing sequence {b1, ...,bM ′ } on extended real line such that

b1 = −∞, bM ′ =∞ and∫ bi+1

bi

|x|dF(x) =

∫
|x|dF
M ′ − 1

≤ ε
ρ − ρ

,∀i = 1, ...,M ′ − 1.

Then it is easy to show that the set of ε-brackets {[vbi2 ,v
bi+1
2 ] : i = 1, ...,M ′−

1} covers F2 and N (ε,V2,‖ · ‖L1(F)) ≤M ′ − 1 < ∞. Hence V2 is a P-Glivenko-

Cantelli class.

The definition of the P-Glivenko-Cantelli class implies that

‖FN −F‖V1
= sup
v∈V1

|FN (v)−F(v)| = sup
a∈R
|FN (va1)−F(va1)| a.s.−−→ 0. (1)

‖FN −F‖V1
= sup
v∈V1

|FN (v)−F(v)| = sup
a∈R
|FN (va1)−F(va1)| a.s.−−→ 0. (2)
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Now we can show the convergence of Ψ N .

sup
a∈R
|Ψ N (a)−Ψ (a)| = sup

a∈R
|
FN (va2)
Fn(va1)

−
F(va2)
F(va1)

|

≤ sup
a∈R
|
FN (va2)
FN (va1)

−
FN (va2)
F(va1)

|+ sup
a∈R
|
FN (va2)
F(va1)

−
F(va2)
F(va1)

|

≤ sup
a∈R
|

FN (va2)
F(va1)FN (va1)

||FN (va1)−F(va1)|+ sup
a∈R

1
|F(va1)|

|FN (va2)−F(va2)|

≤ sup
a∈R
|

FN (va2)
F(va1)FN (va1)

|sup
a∈R
|FN (va1)−F(va1)|+ sup

a∈R

1
|F(va1)|

sup
a∈R
|FN (va2)−F(va2)|.

Notice that 0 < ρ ≤ F(va1) ≤ ρ <∞ and 0 < ρ ≤ FN (va1) ≤ ρ <∞ for each N .

That is, F(va1) and FN (va1) are uniformly bounded away from 0 and∞. Also,

by applying strong law of large numbers,

sup
a∈R
|FN (va2)| ≤ (ρ+ ρ)

∫
|x|dFN a.s.−−→ (ρ+ ρ)

∫
|x|dF < +∞.

By equations 1 and 2, we know

sup
a∈R
|Ψ N (a)−Ψ (a)| a.s.−−→ 0.

Step 1.4. mN
a.s.−−→m This result follows directly from the following stan-

dard results about consistency of M- estimators. We include the proof for

completeness.

Lemma 3. Suppose that

1. supa∈R,ρ∈[ρ,ρ] |Ψ̃ N (a,ρ)−Ψ (a)| a.s.−−→ 0,

2. mN ∈ argmaxa∈R,ρ∈[ρ,ρ] Ψ̃
N (a,ρ) for each N ,

3. m = argmaxa∈RΨ (a) is the unique maximum of Ψ ,

Then mN
a.s.−−→m.
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Proof of Lemma 3. We ignore the argument ρ throughout the proof without

loss of generality. By conditions (2) and (3), we know Ψ̃ N (mN ) ≥ Ψ̃ N (m) and

Ψ (m) ≥ Ψ (mN ) for each N . Using these inequalities we have

Ψ̃ N (mN )−Ψ (mN ) ≥ Ψ̃ N (mN )−Ψ (m) ≥ Ψ̃ N (m)−Ψ (m)

Therefore from the above we have

|Ψ̃ N (mN )−Ψ (m)| ≥max
{
|Ψ̃ N (mN )−Ψ (mN )|, |Ψ̃ N (m)−Ψ (m)|

}
≥ sup
a∈R
|Ψ̃ N (a)−Ψ (a)|

Hence by condition (1), we know |Ψ̃ N (mN ) − Ψ (m)| a.s.−−→ 0. Finally, sup-

pose by contradiction that mN does not converge to m almost surely. Then

there exists an event M with positive probability such that for all ω ∈ M,

mN (ω) 9m(ω). Asm is the unique minimum of Ψ by condition (3), Ψ̃ (mN (ω)) 9
Ψ (m(ω)). Again condition (1) implies that |Ψ̃ N (mN )−Ψ (mN )| a.s.−−→ 0. Hence

we know that there exists M ′ ⊆ M with positive probability such that for

all ω ∈ M ′, Ψ̃ N (mN (ω)) 9 Ψ (m(ω)), which contradicts with |Ψ̃ N (mN ) −
Ψ (m)| a.s.−−→ 0. Thus, we have mN

a.s.−−→m.

Now it suffices to show that the conditions in Lemma 3 holds in our case.

Condition (1) is shown in Step 1.2 and 1.3. Explicitly: supa,ρ |Ψ̃ N (a,ρ) −
Ψ (a)| a.s−−→ 0 and supa |Ψ N (a) −Ψ (a)| a.s.−−→ 0 imply that condition. Condition

(2) holds by the definition ofmN . Condition (3) is shown in the proof of Step

1.1. This completes the proof for mN
a.s.−−→m. The same arguments apply for

showing mN
a.s.−−→m.

Step 2. Part 1 of Theorem — Boundedness of belief means. For any N ,

with observables aN and conjectured precisions ρ̂N , recall we have:

θ|sN , ρ̂N ∼
∑N

i=1 ρ̂is
a(ai , ρ̂i) + ρµµ∑N

i=1 ρ̂i + ρµ
,
(
1−

∑N
i=1 ρ̂i∑N

i=1 ρ̂i + ρµ

) 1
ρµ

 (3)

Since ρ̂i ≥ ρ > 0, it is clear that limN→∞

∑N
i=1 ρ̂i∑N

i=1 ρ̂i+ρµ
= 1, so the variance
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converges to zero for all sequences of signal realizations.

As for the posterior mean, notice that, by definition of mN , mN :

mN ≤
∑N
i=1 ρ̂is

a(ai , ρ̂i) + ρµµ∑N
i=1 ρ̂i + ρµ

≤mN

By taking limit inferior in the first inequality above and limit superior

in the second, we obtain, using the result in Step 2, that for almost all se-

quences of signal realizations, the asymptotic bounds on expected values

hold.

Step 3. Part 2 of Theorem —Limit Set of Posteriors Fix a sequence of

realizations a. We want to characterize the set of distributions the pos-

terior beliefs of the decision maker converge to, P∞(a). By 3, it is clear

that a necessary condition for weak convergence is that the posterior mean∑N
i=1 ρ̂is

a(ai ,ρ̂i )+ρµµ∑N
i=1 ρ̂i+ρµ

converges. We can then focus on sequences with converg-

ing means. Define b = limN→∞

∑N
i=1 ρ̂is

a(ai ,ρ̂i )+ρµµ∑N
i=1 ρ̂i+ρµ

.

We can write the characteristic function of PN (sN , ρ̂N ) as:

ϕN (t) = e
it

{∑N
i=1 ρ̂is

a(ai ,ρ̂i )+ρµµ∑N
i=1 ρ̂i+ρµ

− 1
2

(
1−

∑N
i=1 ρ̂i∑N

i=1 ρ̂i+ρµ

)
1
ρµ

}

By Step 2, the variance converges to zero. We then have, for all t:

ϕN (t)→ eit b

which is the characteristic function of δb. Then, by Levy’s continuity theo-

rem: PN (sN , ρ̂N )
w−→ δb.

We finally show that any b ∈ [m,m] can be achieved. For that, fix a

threshold assignment ρ : R → {ρ,ρ}. Then {ρ(ai)sa(ai ,ρ(ai))}i=1,... is a se-

quence of independent signals with uniformly bounded variance. Then, by
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the strong law of large numbers:∑N
i=1ρ(si)sa(ai ,ρ(ai)) + ρµµ∑N

i=1ρ(si) + ρµ
=
N

∫
ρ(x)sa(x,ρ(x))dFN (x) + ρµµ

N
∫
ρ(x)dFN (x) + ρµ

a.s.−−→

∫
ρ(x)sa(x,ρ(x))dF(x)∫

ρ(x)dF(x)

We finish this step by showing that by appropriately choosing the func-

tion ρ,
∫
ρ(x)sdF(x)∫
ρ(x)dF(x)

can achieve any point between m and m. To see that, recall

that m = maxaΨ (a). It should be clear that µ = minaΨ (a). Since Ψ is con-

tinuous, by choosing different a’s any number in [µ,m] can be achieved. Be-

cause any a corresponds to a particular threshold assignment ρ, this means

that
∫
ρ(x)sa(x,ρ(x))dF(x)∫

ρ(x)dF(x)
can achieve any value in [µ,m]. With the symmetric

argument for m we obtain the result and complete Step 3.

Proof of Theorem 2

Define

ΓN (g) ≡ max
p∈Pa(aN )

Ep [u(g −θ)]

By definition, assuming that the limits exist, we have:

lim
N→∞

g∗(sN ) = lim
N→∞

argmin
g

ΓN (g).

Also denote

Γ (g) = max{u(g −m),u(g −m)}

where m and m are defined in Theorem 1.

We start with introducing an auxiliary problem with finitely many sig-

nals by ignoring the effect of any moment of the posterior distribution that

is not the mean. Explicitly:

Γ̃N (g) ≡ max
p∈Pa(aN )

u(g −Ep[θ]) = max {u(g −m),u(g −m)}

where m and m are defined in Theorem 1 and the equality follows from the

fact that u is convex.
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The result of the proposition is a consequence of the following lemma.

Lemma 4. Let f N be a sequence of random mappings such that xN ∈ argminx∈R f N (x),
for allN ∈ N. Assume there is another random mapping f and that the following
are satisfied:

1. supx∈C |f (x)− f N (x)| a.s−−→ 0, as N →∞, for all compact sets C ⊂ R.

2. x∗ ∈ argminx∈R f (x) is the unique minimum of f .

3. The sequence xN is uniformly bounded almost everywhere.

Then xN
a.s−−→ x∗.

Proof of Lemma 4. By condition (3), there exists an event M with P(M) = 1

such that for all ω ∈M, there is a compact set C(ω) ⊆ R with {xN (ω)}N≥1 ∪
{x∗(ω)} ⊆ C(ω). By condition (1), we can find M ′ ⊆M with P(M ′) = 1 such

that for all ω ∈ M ′, supx∈C(ω) |f (x) − f N (x)| → 0. Easy to see that x∗ is the

unique minimum of f on C(ω) and xN is a minimum of f N on C(ω). Fol-

lowing the same proof of Lemma 3, we know for all ω ∈M ′, xN (ω)→ x∗(ω),

which implies xN
a.s−−→ x∗.

In the remainder of this proof, we aim to show that ΓN , Γ , gN ≡ g∗(sN )

and g∗ solving u(g∗ −m) = u(g∗ −m) satisfy the conditions of Lemma 4. We

do so in three steps, one for each condition in the lemma. This allows us to

obtain that g∗(sN )
a.s−−→ g∗.

Step 1. supg∈C |Γ(g)−ΓN(g)| a.s.−−→ 0, as n→∞, for all compact sets C ⊂ R

Step 1.1. supg∈R |Γ̃N(g)−ΓN(g)| a.s.−−→ 0
We start by using the auxiliary function Γ̃N . As N grows to infinity, the

gap between ΓN and Γ̃N shrinks uniformly. We prove this statement next.

Start by noticing that, for fixed P N , for any p ∈ Pa(aN ):

ΓN (g) ≥ Ep [u(g −θ)] ≥ u
(
g −Ep[θ]

)
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where we use convexity of u for the second inequality. Then, by taking

max over p ∈ Pa(aN ) we obtain Γ̃N (g) ≤ ΓN (g).

Now, for each g, θ̃ and q ∈ [m,m], Taylor’s rule implies existence of

ω(g, ˜theta,q):

u(g − θ̃) = u (g − q) +u′(g −ω(g, θ̃,q))
(
θ̃ − q

)
By the implicit function theorem, ω(·,θ, ·) is a differentiable, and thus

continuous function.

Now, if there exists p ∈ Pa(aN ) with Ep[θ] = q, we can take expectations

with respect to p in the above equation to obtain:

Ep[u(g − θ̃)] = u(g −Ep[θ]) +Ep
[
u′(g,ω(g, θ̃,Ep[θ]))

(
θ̃ −Ep[θ]

)]
We can then use subadditivity of the max operator to obtain:

ΓN (g) ≤ max
p∈Pa(aN )

u(g −Ep[θ]) + max
p∈Pa(aN )

E
[
u′

(
g −ω(g, θ̃,Ep[θ])

)(
θ̃ −Ep[θ]

)]
= Γ̃N (g) + max

p∈Pa(aN )
E
[
u′

(
g −ω(g, θ̃,Ep[θ])

)(
θ̃ −Ep[θ]

)]
Now, fix a compact set C. Define v(θ̃) = maxg∈C,q∈[m,m]u

′
(
g −ω(g, θ̃,q)

)
.

Which is guaranteed to be well-defined by continuity of u′ and ω. We then

have:

0 ≤ ΓN (g)− Γ̃N (g) ≤ max
p∈Pa(aN )

Ep
[
v(θ̃)

(
θ̃ −Ep[θ]

)]
Notice that neither bound depends on g within this compact set. On top

of that, the upper bound converges to zero. To see that, recall that all signals

are informative - ρ > 0. That implies every pN ∈ Pa(aN ) have an almost-

sure convergent subsequence to a degenerate distribution. Therefore, θ̃ −
Ep[θ]→ 0 almost surely. That implies:

sup
g∈C
|ΓN (g)− Γ̃N (g)| a.s.−−→ 0
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Step 1.2. supg∈C |Γ(g)− Γ̃N(g)| a.s.−−→ 0, as n→∞, for all compact sets C ⊂ R
Recall that we can write Γ̃N (g) = max{u(g −mN ),u(g −mN )}. Also by

Theorem 1, mN
a.s.−−→m and mN

a.s.−−→m.

We use the following lemma:

Lemma 5. Let f N , gN , f ,g forN ∈ N be functions fromD ⊂ R into the reals, and
let hN = max{f N , gN } and h = max{f ,g}. If supx |f N − f | → 0 and supx |gN −
g | → 0 then, supx |hN − h| → 0.

Proof. For any fixed ε there exist Nf and Ng such that, for all x ∈D:

|f N (x)− f (x)| < ε if N ≥Nf

|gN (x)− g(x)| < ε if N ≥Ng

Take N ≥ Ñ = max{Nf ,Ng}. We then have:

h(x) ≤ (f N (x) + ε)1f (x)≥g(x) + (gN (x) + ε)1g(x)≥f (x)

≤ hN (x) + ε

where the second inequality comes from the definition of hN . By the

same logic, inverting the roles of h and hN :

hN (x) ≤ (f (x) + ε)1f N (x)≥gN (x) + (g(x) + ε)1gN (x)≥f N (x)

≤ h(x) + ε

By joining the two inequalities above: |h(x) − hN (x)| ≤ ε for all N ≥ Ñ .

Because x is arbitrary, we have our result.

In order to apply the result above, notice that supg∈C |u(g − x)− u(g − y)|
is a continuous function of x and, thus, converges to 0 as x → y. Thus,

supg∈C |u(g −mN ) − u(g −m)| a.s.−−→ 0 and similarly supg∈C |u(g −mN ) − u(g −
m)| a.s.−−→ 0. Therefore, applying the above lemma, defining f N (x) = u(x−mN )

and gN (x) = u(x −mN ) gives us our result.
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Step 1.3. supg∈C |Γ(g)−ΓN(g)| a.s.−−→ 0, as n→∞, for all compact sets C ⊂ R.
This is directly implied by the previous two steps.

Step 2. g∗ such that u(g∗ −m) = u(g∗ −m) is the unique minimum of Γ .

Recall that Γ (g) = max{u(g −m),u(g −m)}. First, notice that g∗ that min-

imizes Γ must be in [m,m]. Assume, for a contradiction, that minΓ (g) =

u(g∗ −m) > u(g∗ −m). By continuity of u, we can choose m < g ′ < g∗ such

that u(g ′ −m) > u(g ′ −m), that is, Γ (g ′) = u(g ′ −m). Because u is strictly

convex and minimized at 0, it must be that u(g∗ −m) > u(g ′ −m). But then,

Γ (g ′) < Γ (g∗), which is a contradiction. A similar contradiction is found if

we assume minΓ (g) = u(g∗ −m) < u(g∗ −m). Thus, the equality must hold.

Step 3. The sequence gN is uniformly bounded almost everywhere .

For an observable realization aN , recall that mN = minp∈Pa(aN )E[θ] and,

symmetrically, mN = maxp∈Pa(aN )E[θ]. Assume, for a contradiction, that

there is an event M with probability 1, such that gN is unbounded. If that’s

the case, up to a subsequence, we have: gN > N . Then, by strict convexity

of u we have:

Γ (gN ) = max
p∈Pa(aN )

Ep[u(gN −θ)] ≥ max
p∈Pa(aN )

u(gN −Ep[θ]) ≥ u(gN −mN )

Now, because mN
a.s.−−→ m, we can choose an event M ′ ⊂ M, also with

probability one, in which mN . That implies, with the unboundedness of gN

and strict convexity of u, that the lower bound above diverges, so Γ (gN ) is

unbounded. To show that gN cannot be optimal, it suffices to show that

there is a sequence xN such that Γ (xN ) is bounded in this event. For any real

a, take the sequence xN = a for all N . Because ΓN
a.s.−−→ Γ uniformly in any

compact set, we have that, for a further event M ′′ ⊂M ′, with probability 1,

that for any ε, for sufficiently large N ,

ΓN (a) < Γ (a) + ε
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Thus, ΓN (a) is a bounded sequence, proving that, for sufficiently large

N :

ΓN (a) < ΓN (gN )

which is the contradiction that we were seeking.

Proof of Corollary 1

Symmetry implies Consistency. Define

ζ(m) =
ρ
∫ m
−∞xdF(x) + ρ̄

∫∞
m
xdF(x)

ρF(m) + ρ̄ (1−F(m))
, ζ(m) =

ρ
∫ m
−∞xdF(x) + ρ

∫∞
m
xdF(x)

ρF(m) + ρ (1−F(m))

Clearly, ζ(m) = m and ζ(m) = m. Because F is symmetric around θ, for

m ∈ R:

ζ(2θ−m) =
ρ
∫ 2θ−m
−∞ xdF(x) + ρ̄

∫∞
2θ−mxdF(x)

ρF(2θ −m) + ρ̄ (1−F(2θ −m))
= 2θ−

ρ
∫ m
−∞xdF(x) + ρ

∫∞
m
xdF(x)

ρF(m) + ρ (1−F(m))
= 2θ−ζ(m)

Then, 2θ −m = 2θ − ζ(m) = ζ(2θ −m). But because m is the unique fixed

point of ζ:12 m = 2θ −m, and we are done.

Asymmetry implies non-consistency for some sets. Let x∗ be such that

u(x∗) , u(−x∗). Define η = ρ
ρ . Notice, from the proof of Proposition 1 that,

that m−m
2 is an function of η onto the real line. Then, choose η∗ such that

m−m
2 = x∗. Finally, recall that, by observable signals, θ = m+m

2 . Then:

u(θ −m) = u(x∗) , u(−x∗) = u(θ −m)

Thus, by Theorem 2, g∗ , θ.

12See the Proof of Theorem 1
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Proof of Proposition 1

m(m) monotonically increases(decreasing) in η We go through the proof

for m, a symmetric argument holds for m. Define kη(a) as

kη(a) ≡ E[θ](a) =
ρ
∫ a
−∞xf (x)dx+ ρ

∫∞
a
xf (x)dx

ρF(a) + ρ (1−F(a))
=

∫ a
−∞xf (x)dx+ η

∫∞
a
xf (x)dx

F(a) + η (1−F(a))

For convenience we can rewrite kη(a) as

kη(a) =
F(a)E[x|x < a] + η(1−F(a))E[x|x ≥ a]

F(a) + η(1−F(a))

We know that

m = argmax
a∈R

kη(a) and m = max
a∈R

kη(a)

Then, via the envelope theorem we have

dm
dη

=
dkη(m)

dη
=

F(m)(1−F(m))

(F(m) + η(1−F(m)))2 (E[x|x ≥m]−E[x|x < m]) > 0

Step 1. As η→ +∞(−∞), m→∞(m→−∞). First note that

lim
η→∞

kη(a) = E[x|x ≥ a] > a

The last inequality follows from the full support of the distribution. For

any z ∈ R we want to show that ∃ η̃ such that kη̃(m) ≥ z. From the above

limit, we know that ∃η̃ such that kη̃(z) > z. Because m = argmaxa∈R kη(a) we

know that kη̃(m) ≥ kη̃(z) > z.

Step 2. As η → 1, m −m→ 0. When η → 1, kη(a) reduces to the uncon-

ditional expected value for any a. Similarly, the optimization problem that

determines m reduces to the unconditional expected value, completely un-

affected by a. Thus, as η → 1 both m and m converge to the unconditional
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expectation.

Proof of Proposition 2

LetH �FOSD G be precisions distributions, and let the true value of the state

be θ. Assume these distributions of precision generate signal distributions

FH and FG respectively. We first prove FH is a mean-preserving spread of

FG — denoted FG �MPS FH .

Signals are more disperse under H . Indeed, notice that:

FH (x) =
∫
ρ
Fρ(x)dH(ρ) FG(x) =

∫
ρ
Fρ(x)dG(ρ),

where Fρ is the CDF of the Normal distribution with mean θ and preci-

sion ρ. Now, notice∫ z

−∞
Fρ(x)dx =

√
ρ

√
2π
e−

ρz2

2 +
1
2
z ·Erfc

(
−
√
ρz
√

2

)
.

Is decreasing in ρ. Thus:

∫ z

−∞
FH (x)dx =

∫
ρ

∫ z

−∞
Fρ(x)dxdH(ρ) ≥

∫
ρ

∫ z

−∞
Fρ(x)dxdG(ρ) =

∫ z

−∞
FG(x)dx,

where the change in the integration order is a consequence of Tonelli’s

theorem, and the inequality is justified because
∫ z
−∞Fρ(x)dx is decreasing in

ρ, and G first-order stochastically dominate H . This inequality implies FH
second-order stochastically dominates FG. But it is clear FH and FG have

the same mean, θ. So we proved FH is a mean-preserving spread of FG. We

now use this result to conclude the proof.
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Asymptotic belief set is larger under H . We prove the result for the up-

per bound. The result holds for the lower bound by symmetry. For a signal

distribution P , define:

kP (a) =

∫ a
−∞xdP (x)dx+ η

∫∞
a
xdP (x)dx

P (a) + η (1− P (a))
=
P (a)EP [x|x ≤ a] + η (1− P (a))EP [x|x ≥ a]

P (a) + η (1− P (a))

We know:

mG = max
a
kFG(a) mH = max

a
kFH (a)

First, we implement a change of variables. For each a, there exists a

quantile q ∈ [0,1] such that P (a) = q. We can then write:

kP (a) = k̂P (q) ≡
qEP [x|P (x) ≤ q] + η(1− q)EP [x|P (x) ≥ q]

q+ η(1− q)

Because FH is a mean-preserving spread of FG,

EFH [x|FH (x) ≥ q] ≥ EFG[x|FG(x) ≥ q]and EFG[x|FG(x) ≤ q] ≥ EFH [x|FG(x) ≤ q].

Moreover, because FG and FH have the same mean:

qEFH [x|FH (x) ≤ q] + (1− q)EFH [x|FH (x) ≥ q] = EFH [x] =

EFG[x] = qEFG[x|FG(x) ≤ q] + (1− q)EFG[x|FG(x) ≥ q].

Because η > 1, the expressions above above imply k̂FG(q) ≤ k̂FH (q). To

conclude the argument, we note:

mG = max
a
kFG(a) = max

q∈[0,1]
k̂FG(q) ≤ max

q∈[0,1]
k̂FH (q)

= max
a
kFH (a) =mH .
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Proof of Proposition 3

We go through the proof for m, a symmetric argument holds for m. From

Theorem 2 we know that

m =
ρ
∫ m
−∞ sa(x,ρ)dF(x) + ρ

∫∞
m

sa(x,ρ)dF(x)

ρF(m) + ρ (1−F(m))

Where sa(x,ρ) is the inverted signal given action x and conjectured preci-

sion ρ, and F(x) is the distribution of the observables. In the observable

actions case the inverted signal is simply sa (ai , ρ̂i) = ai +
ρµ
ρ̂i

(ai − µ), thus the

above equation becomes

ma =
ρ
∫ ma
−∞

(
x+

ρµ
ρ (x −µ)

)
dF(x) + ρ

∫∞
ma

(
x+

ρµ
ρ (x −µ)

)
dF(x)

ρF(ma) + ρ̄ (1−F(ma))

=
ρ
∫ ma
−∞xdF(x) + ρ

∫∞
ma
xdF(x) +

∫∞
−∞ρµ(x −µ)dF(x)

ρF(ma) + ρ̄ (1−F(ma))

Recall that actions are a(si ,ρi) =
ρµµ+ρisi
ρµ+ρi

, where ρi is the true not conjectured

precision of the agent. Thus, given ρi the expected value of the observable

is
ρµµ+ρiθ
ρmu+ρi

, since the signals normally distributed around θ. Recall from the

setup that

F(x) =
∫

[ρ,ρ]
Fρ

(
sa(x,ρ)

)
dG(ρ)

Leading to ∫ ∞
−∞
ρµ(x −µ)dF(x) = (θ −µ)

∫
ρρµ
ρµ + ρ

dG(ρ) = c
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Proof of Proposition 4

Recall from Proposition 3 that the bounds of the limiting posterior set are

given by

ma =
ρ
∫ ma
−∞xdF(x) + ρ̄

∫∞
ma
xdF(x) + c

ρF(ma) + ρ̄ (1−F(ma))
, ma =

ρ
∫ ma
−∞xdF(x) + ρ

∫∞
ma
xdF(x) + c

ρF(ma) + ρ (1−F(ma))

(4)

where c =
ρρµ
ρµ+ρ (θ −µ).

The optimal guess is ma = ma+ma
2 . When θ = µ, c = 0 and by Corollary 1

ma = θ = µ and the observer guesses correctly. From now on, we first focus

on the case where θ > µ.

Denote G(z) = ρF(z) + ρ̄ (1−F(z)) and G(z) = ρF(z) + ρ (1−F(z)). Rear-

ranging the first equation and using integration by parts, we get

maG(ma) = ρ
(
xF(x)

∣∣∣ma−∞ −∫ ma

−∞
F(x)dx

)
+ ρ

(
−x (1−F(x))

∣∣∣∞
ma

+
∫ ∞
ma

(1−F(x))dx
)

+ c

= ρ
(
maF(ma)−

∫ ma

−∞
F(x)dx

)
+ ρ

(
ma (1−F(ma)) +

∫ ∞
ma

(1−F(x))dx
)

+ c

=maG(ma)−
(
ρ

∫ ma

−∞
F(x)dx − ρ

∫ ∞
ma

(1−F(x))dx
)

+ c.

This implies

ρ

∫ ma

−∞
F(x)dx − ρ

∫ ∞
ma

(1−F(x))dx = c. (5)

A symmetric argument for ma shows that

ρ

∫ ma

−∞
F(x)dx − ρ

∫ ∞
ma

(1−F(x))dx = c. (6)

Taking the derivative with respect to the state θ on both sides of equa-
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tion 5 and equation 6, we get

dma
d θ

=
ρ

ρµ + ρ
+

ρµ
ρµ + ρ

ρ

G(ma)

dma
d θ

=
ρ

ρµ + ρ
+

ρµ
ρµ + ρ

ρ

G(ma)

The derivative of the optimal guess ma = ma+ma
2 with respect to θ is then:

dma
dθ

=
ρ

ρµ + ρ
+

ρµ
ρµ + ρ

ρ

2

(
1

G(ma)
+

1
G(ma)

)
(7)

Recall that H is normally distributed and denote its density function as

h. Then, we can use the derivative of the optimal bounds obtained above to

calculate:

dF(ma)
dθ

=
∂F(ma)
∂ma

dma
dθ

+
∂F(ma)
∂θ

= −
ρµ

ρµ + ρ
ρ

G(ma)
f (ma)

dF(ma)
dθ

=
∂F(ma)
∂ma

dma
dθ

+
∂F(ma)
∂θ

= −
ρµ

ρµ + ρ
ρ

G(ma)
f (ma)

It then follows that

d2ma
dθ2 =

ρ − ρ
2

(
ρρµ
ρµ + ρ

)2
 f (ma)

G
3
(ma)

−
f (ma)

G3(ma)


=
ρ − ρ

2

(
ρρµ
ρµ + ρ

)2
( f (ma)

G(ma)
−
f (ma)
G(ma)

)
1

G2(ma)
+
f (ma)

G(ma)

 1

G
2
(ma)

− 1

G2(ma)


 .

Lemma 6.
(

1
G

2
(ma)
− 1
G2(ma)

)
> 0 whenever θ > µ

Proof. The statement is equivalent to G(ma) > G(ma), which is also equiv-

alent to F(ma) +F(ma) > 1. Since H is symmetric around
ρθ+ρµµ
ρ+ρµ

, the latter is
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true if and only if ma >
ρθ+ρµµ
ρ+ρµ

. We show that this is the case. Define

ζ(z,u) =
ρ
∫ z
−∞xdF(x) + ρ̄

∫∞
z
xdF(x) +u

ρF(z) + ρ̄ (1−F(z))
, ζ(z,u) =

ρ
∫ z
−∞xdF(x) + ρ

∫∞
z
xdF(x) +u

ρF(z) + ρ (1−F(z))

(8)

We know ma = ζ(ma, c), and it was previously proved that ma maximizes

ζ(ma, c). By the envelope theorem we have:

dζ(ma, c)
du

=
∂ζ(ma, c)
∂u

=
1

ρF(ma) + ρ̄ (1−F(ma))
> 0

A similar argument implies that
ζ(ma,u)
du > 0, for all u ∈ R. Finally, by an

equivalent argument to the proof of Corollary 1, we have
ζ(ma,0)+ζ(ma,0)

2 =∫
xdH =

ρθ+ρµµ
ρ+ρmu

. Then, if θ > µ - which implies c > 0:

ma =
ma +ma

2
=
ζ(ma, c) + ζ(ma, c)

2
>
ζ(ma,0) + ζ(ma,0)

2

This concludes the proof of the lemma.

Therefore, (
f (ma)

G(ma)
−
f (ma)
G(ma)

)
≥ 0 =⇒ d2ma

dθ2 > 0. (9)

We next consider the partial derivative of the optimal guess with respect

to ρ. We start with an alternative implicit function of ma and ma. Notice

that if f as the density function of a normal distribution with mean µ̃ and

variance σ̃2, then ∂f (x)
∂x = −x−µ̃

σ̃2 f (x). This implies xf (x) = µ̃f (x) − σ̃2 ∂f (x)
∂x .
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Plugging this into the initial implicit functions 4, we get

ma =
ρµµ+ ρθ

ρµ + ρ
+

c

G(ma)
+ (ρ − ρ)

ρ

(ρµ + ρ)2
f (ma)

G(ma)
,

ma =
ρµµ+ ρθ

ρµ + ρ
+

c
G(ma)

− (ρ − ρ)
ρ

(ρµ + ρ)2

f (ma)
G(ma)

.

By definition of ma, we have

ma = θ + (θ −µ)
(
dma
dθ
− 1

)
+

(ρ − ρ)ρ

2(ρµ + ρ)2

(
f (ma)

G(ma)
−
f (ma)
G(ma)

)
. (10)

Based on the implicit function theorem, we can calculate the following

derivative:

dma
dρ

=
ρµ(ma −µ) + ρ(θ −ma)

2ρ2 + 2ρµρ
+
c
2

ρµ + (ρµ + ρ)ρ

(ρµ + ρ)ρ

(
1

G(ma)
+

1
G(ma)

)
.

As θ > µ, it is easy to show that ma > µ and c > 0. This leads to the

following result.

θ > µ and ma ≤ θ =⇒ dma
dρ

> 0. (11)

Note that the last term of dmadρ ,
(

1
G(ma)

+ 1
G(ma)

)
can be rewritten as

(
dma
dθ −

ρ
ρµ+ρ

)
ρµ+ρ
ρµ

2
ρ .

Let κ1 = 1
2ρ2+2ρµρ

and κ2 =
ρµ+(ρµ+ρ)ρ

ρµρ2 , then:

d2ma
dρdθ

= ρµκ1
dma
dθ
− ρκ1

(
dma
dθ
− 1

)
+
ρρµ
ρµ + ρ

κ2

(
dma
dθ
−

ρ

ρµ + ρ

)
+ cκ2

d2ma
dθ2

(12)

We know that dmadθ > ρ
ρµ+ρ > 0 and when θ = µ, d

2ma
dθ2 = 0. This leads to the
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following result:

θ = µ and
dma
dθ
≤ 1 =⇒ d2ma

dρdθ
> 0. (13)

To make it clear that the optimal guess depends on θ and ρ, we some-

times denote ma, ma and ma as ma(ρ,θ), ma(ρ,θ) and ma(ρ,θ). Notice that ρ̃

is determined by forcing dma
dθ to approach 1 when θ goes to infinity, while

at ˜̃ρ we have dma
dθ ( ˜̃ρ,µ) = 1.

The rest of the proof will be divided by the following lemmas. We will

fix µ and consider the case with θ ≥ µ.

Lemma 7. For any given ρ, if ma(ρ, θ̂) > θ̂ and dma
dθ (ρ, θ̂) > 1, then ma(ρ,θ) > θ

for all θ > θ̂.

Proof. Fix ρ. Assume that there exists θ̂, ma(ρ, θ̂) > θ̂ and dma
dθ (ρ, θ̂) > 1.

Suppose by contradiction that there exists some θ > θ̂ such that ma(ρ,θ) =

θ. By continuity of dmadθ , there exists θ′ < θ′′ ∈ (θ̂,θ] where dma
dθ (ρ,θ′) = 1 and

dma
dθ (ρ,θ′′) < 1. By continuity of ma, ma(ρ,θ′) > θ′.

At θ′, equation (10) implies
(
f (ma)
G(ma)

− f (ma)
G(ma)

)
> 0, which guarantees d

2ma
dθ2 (ρ,θ′) >

0. This implies that for a neighborhood to the right of θ′, dmadθ > 1. Notice

that this holds for any θ ∈ [θ̂,θ] with dma
dθ (ρ,θ) = 1. Thus dma

dθ (ρ,θ) ≥ 1 for all

θ ∈ [θ̂,θ], which contradicts the assumption that ma(ρ,θ) = θ. As a result,

we know ma(ρ,θ) > θ for θ > θ̂. This concludes the proof of the lemma.

Lemma 8. For any given ρ, if there exists θ∗ > µ such that ma(ρ,θ∗) = θ∗ and
ma(ρ,θ) < θ for all µ < θ < θ∗, then ma(ρ,θ) > θ for θ > θ∗.

Proof. Suppose there exists θ∗ > µ such that ma(ρ,θ∗) = θ∗ and ma(ρ,θ) <

θ for µ < θ < θ∗. This implies dma
dθ (ρ,θ∗) ≥ 1. Again by equation (10), we

know
(
f (ma)
G(m)

− f (ma)
G(ma)

)
> 0, which leads to d2ma

dθ2 (ρ,θ∗) > 0 by (9). Then for any

θ in a small neighborhood to the right of θ∗, dmadθ (ρ,θ) > 1 and ma(ρ,θ) > θ.

By Lemma 7. This concludes the proof of the lemma and the proposition.
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