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Abstract

We study asymptotic learning when the decision maker faces ambi-

guity in the precision of her information sources. She aims to estimate

a state and evaluates outcomes according to the worst-case scenario.

Under prior-by-prior updating, we characterize the set of asymptotic

posteriors the decision maker entertains, which consists of a contin-

uum of degenerate distributions over an interval. Moreover, her asymp-

totic estimate of the state is generically incorrect. We show that even

a small amount of ambiguity may lead to large estimation errors and

illustrate how an econometrician who learns from observing others’

actions may over- or underreact to information.
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1 Introduction

Consider agents who rely on multiple information sources to learn about a

payoff-relevant state. A voter turns to poll results and advertising to gauge a

politician’s competence and agenda, while an investor leverages the reports

of various analysts to project the future returns of a stock. A common as-

sumption in the literature is that the decision maker (DM) has beliefs about

the quality of her information sources and that these beliefs are correctly

specified. In such cases, asymptotic learning is successful. Often, however,

forming beliefs is not straightforward. For example, a customer consulting

online reviews for a product may not have particular beliefs about the qual-

ity of reviewers because they are being consulted for the first time. In such

settings, little is known about learning. We aim to close this gap.

We analyze asymptotic learning when the DM lacks particular beliefs

about her information sources. In our baseline model, she observes unbi-

ased signals and aims to estimate a state by minimizing a loss function. The

state and the signals are jointly normally distributed, but the DM does not

know the signals’ precisions—the inverse of their variances. The DM is not

probabilistically sophisticated; instead, she faces ambiguity in the precision

of each information source and perceives them to lie in a bounded interval.

Each assignment of precisions to information sources pins down a belief of

the DM, a joint distribution over signals and the state. Thus, an interval of

perceived precisions induces a set of beliefs. We assume the DM updates

her beliefs prior by prior. Concretely, upon observing information, she up-

dates each belief in her belief set according to Bayes’ rule. In doing so, the

DM obtains multiple posterior distributions for the state. Thus, ambiguity

about precisions induces ambiguity about the state. Finally, she takes a ro-

bust approach and evaluates the expected loss according to the worst case

across all posteriors.

Our first result characterizes the DM’s set of posteriors as the number

of signals grows large. We show that the induced ambiguity concerning

the state does not vanish asymptotically. That is, the posterior beliefs of
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the DM do not converge to a single distribution as the number of infor-

mation sources grows. As in standard Bayesian learning, the variance of

each posterior converges to zero. However, different beliefs about preci-

sions lead to different weighting of signals and, consequently, to different

posterior means. For example, for any realization of signals, the DM’s belief

set contains a belief that assigns higher precisions to signals with high re-

alizations and lower precisions otherwise. In this case, the posterior mean

converges to a relatively high value. Similarly, there exist beliefs that lead

to a relatively low posterior mean. Applying this process to all beliefs over

precisions generates an interval of posterior means. We show that the set

of asymptotic posteriors is the set of Dirac measures over values in that in-

terval. Importantly, this set is independent of the objective of the DM and

includes a degenerate belief over the true state. We then extend this char-

acterization of the limit belief set to settings in which unbiased signals are

not directly observable, but the DM has access to certain functions of the

signals. This setup encompasses a range of environments in which the DM

monitors the actions of other agents.

Our second result characterizes the DM’s asymptotic estimate of the

state. Her decision problem can be interpreted as a zero-sum game against

nature. Initially, the DM receives information and chooses the estimate that

minimizes her expected loss. Subsequently, nature chooses the precision of

each source to maximize the DM’s loss. In doing so, nature affects the DM’s

posterior distribution. We show that, asymptotically, this is equivalent to

nature choosing posterior means in the interval described in the previous

paragraph. If the DM chooses a relatively low estimate within the interval,

nature will maximize her loss by selecting the highest value possible, and

vice versa. To minimize the maximal loss, the DM’s estimate makes nature

indifferent between choosing the highest or lowest value from the interval

of asymptotic posterior means. We show that, in our setting, asymptotic

learning typically fails. That is, the DM’s estimate is not consistent. To

the best of our knowledge, this is the first paper to show how ambiguity

aversion disrupts classical inference from large samples.
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These results have several implications. First, we show that when the

true signal precisions are relatively low, even a small amount of ambiguity

can lead to arbitrarily large losses and estimation errors. Therefore, the

magnitude of ambiguity and estimation error need not be proportional—

a minor degree of ambiguity can have a major impact on the quality of

asymptotic learning.

Second, we show the DM can be worse off even if she perceives all her

information sources to be more informative. Consider two decision prob-

lems, a and b, in which the DM directly observes unbiased signals but has

different intervals of perceived precision. We show that even if the lowest

precision in decision problem a is higher than the highest precision in de-

cision problem b, the DM may be better off in decision problem b. To carry

out this comparison, we study how the initial ambiguity about precisions

maps into induced ambiguity about the state. In particular, we show that

the asymptotic interval of posterior means is determined by the ratio be-

tween the highest and the lowest possible perceived precisions. Because the

length of this interval pins down the DM’s loss, her welfare is monotonic in

that ratio, regardless of the level of perceived precision.

Lastly, we analyze the problem of an ambiguity-averse econometrician

who observes choices made by Bayesian agents. The agents estimate a payoff-

relevant state given their private information. The econometrician aims to

estimate the same state but does not know the precision of the private sig-

nals observed by the Bayesian agents. For example, consider a healthcare

official assessing the prevalence of a disease in a region. She relies on hospi-

tal reports to do so but is not sure about the quality of their data collection

protocols. Generically, the econometrician fails to aggregate information.

We characterize how she may over- or underreact to the information con-

tained in the observed actions as a function of her initial belief and the true

precisions of signals observed by the Bayesian agents.

Related Literature Our paper studies learning under ambiguity, in which

the DM follows the maxmin expected utility model (Gilboa and Schmei-
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dler, 1989) and prior-by-prior updating (full Bayesian updating).1 Under

the same assumptions, Epstein and Schneider (2008) studies a financial

market where the representative agent observes one signal with ambigu-

ous precision. They show how this ambiguity affects reactions to informa-

tion and the asset price. Follow-up papers extend these results to other

environments (Illeditsch, 2011; Gollier, 2011; Condie and Ganguli, 2017).

We consider a similar setup as Epstein and Schneider (2008) but focus on

asymptotic learning and consistency of the DM’s estimate.2 Another closely

related paper is Chen (2023), which shows that under prior-by-prior updat-

ing, ambiguous signals generically lead to herding behavior and informa-

tion cascades in a social learning setting. By comparison, we focus on the

asymptotic learning of a single DM. The two papers are complementary in

facilitating our understanding of the implications of prior-by-prior updat-

ing on learning.

Prior-by-prior updating has also been widely adopted in many appli-

cations. Recent examples include mechanism design (Bose and Daripa,

2009; Bose and Renou, 2014), auctions (Ghosh and Liu, 2021; Auster and

Kellner, 2022), persuasion and cheap talk (Kellner and Le Quement, 2018;

Beauchêne et al., 2019), and optimal stopping (Auster and Kellner, 2023;

Auster et al., 2024). In Section 6, we discuss alternative updating rules un-

der ambiguity, such as the maximum likelihood updating rule (Gilboa and

Schmeidler, 1993) and its generalization in Epstein and Schneider (2007)

and Cheng (2022).

Of relevance is also the misspecification literature, which provides an

alternative foundation for the failure of asymptotic learning. In this liter-

ature, a misspecified agent typically has an initial belief that assigns prob-

ability 0 to (a neighborhood of) the true model. Berk (1966) and Shalizi

(2009) show that with exogenous information, under mild conditions, the

1See Pires (2002) for an axiomatization.
2Al-Najjar (2009) show that individuals who use frequentist models might compen-

sate for the scarcity of data by limiting inference to a statistically simple family of events,
which leads to statistically ambiguous beliefs. In their setting, such ambiguity vanishes in
standard continuous outcome spaces as data increases without bounds.
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agent’s beliefs converge, although not to the true state. Other works focused

on settings where the signals can be affected by the actions of the agent and

are, hence, endogenous (Frick et al., 2023; Esponda et al., 2021; Fudenberg

et al., 2021; Heidhues et al., 2021).3 Our paper differs from the existing

work in three ways. First, the agent in the misspecified learning literature

is a Bayesian learner, whereas, in our setup, the DM holds multiple beliefs

and adopts prior-by-prior updating. Second, the DM in our model can be

interpreted as correctly specified as we will explain in Footnote 6. Third,

we show that in our setting, even when information is exogenous, as in Berk

(1966) and Shalizi (2009), the belief set diverges almost surely.

Our paper also relates to the robust statistics literature (Huber, 2004).

Roughly speaking, robust statistics are statistics that produce good perfor-

mance even with deviations from assumptions on the data-generating pro-

cess. Cerreia-Vioglio et al. (2013) highlight the close relation between de-

cision making under ambiguity, akin to the approach in this paper, and ro-

bust statistics, and characterize conditions under which the two approaches

are equivalent. However, the problems studied in the robust statistics liter-

ature typically differ from the ones studied in this paper. For instance, Gia-

comini and Kitagawa (2020) and Giacomini et al. (2019) propose new tools

for Bayesian inference in set-identified models to reconcile the asymptotic

disagreement between Bayesian and frequentist inferences. By contrast, our

focus is on characterizing learning outcomes as the number of signals grows

large. Finally, this result is in contrast to Marinacci (2002), where ambigu-

ity vanishes because all observations are drawn from the same ambiguous

distribution.

2 Setup

A DM aims to learn the state of the world, θ ∈ Θ := R, and has access to N

information sources, I =: {1, ...,N }. It is common knowledge that the state

3See Nyarko (1991) and Fudenberg et al. (2017) for examples in which the convergence
of beliefs fails.
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θ is normally distributed with mean µ and variance 1
ρµ

. Each information

source i ∈ I produces a signal si = θ + εi , where the noise εi is independent

of the state and is normally distributed with mean 0 and variance 1
ρi

. We

call ρµ , ρi > 0 the precision of the initial belief and information source i,

respectively.4 We assume that the state and signal noise are independent of

each other.

The actual precisions of the information sources are drawn i.i.d. from

some distribution function G on [ρ,ρ] with ρ > ρ > 0. However, the DM

faces ambiguity in these precisions. In particular, she knows that the pre-

cision of each information source lies in [ρ,ρ], but she cannot form a prob-

abilistic belief about it. Rather, the DM considers a range of conjectures for

the precision of each information source. We denote the DM’s conjectured

precision for information source i by ρ̂i ∈ [ρ,ρ].

Conditional on the realized state θ, we assume the signals are i.i.d. ac-

cording to the cumulative distribution function F, where

F(s) =
∫

[ρ,ρ]
Fρ(s)dG(ρ),

with Fρ being the CDF of a normal distribution with mean θ and variance1
ρ

for each ρ ∈ [ρ,ρ].5 For now, we assume that the DM directly observes the

realized signals. In Section 3.4, we extend the framework to consider more

general assumptions on observability.

Belief Updating For each N ≥ 1, denote the profile of precisions by ρN :=

(ρ1, ...,ρN ), the profile of conjectured precisions by ρ̂N := (ρ̂1, ..., ρ̂N ), and

the profile of signals by sN := (s1, ..., sN ). Let ∆(RN ) be the set of distribu-

tions over RN . Following Epstein and Schneider (2007) and Epstein and
4Our framework is suitable for analyzing biased signals as well. While our main in-

sights remain unchanged in that case, the comparison with the Bayesian benchmark in
Section 3.1 is less clear.

5We use this assumption of the true distribution of signals as a benchmark for our
analysis. A more general interpretation of F is that it represents the limit of the empirical
distribution of signals. Based on this interpretation, the characterization in Theorem 1 and
Theorem 2 does not rely on whether and how we model the true distribution of signals.
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Schneider (2008), we define Ls(ρ̂N ,θ) ∈ ∆(RN ) as the likelihood function

for the profile of signals, which is the conditional distribution for signals

given conjectured precisions ρ̂N and the realized state θ. Then the set of

likelihood functions of the DM can be represented by LsN , where

LsN = {Ls(ρ̂N ,θ) ∈ ∆(RN ) : ρ̂N ∈ [ρ,ρ]N , θ ∈ R}.

We assume the DM adopts prior-by-prior updating (Pires, 2002) to de-

rive posteriors using the initial belief and the set of likelihood functions

LsN . In other words, given the realized profile of signals sN and a vector of

conjectured precisions ρ̂N , the posterior over the state P s
N (sN , ρ̂N ) ∈ ∆(R) is

obtained by applying Bayes’ rule.6 Then, the posteriors of the DM can be

represented by the following set:

Ps(sN ) =
{
P s
N (sN , ρ̂N ) ∈ ∆(R) : ρ̂N ∈ [ρ,ρ]N

}
.

We want to emphasize that prior-by-prior updating does not select or rule

out any of the available conjectures.

After observing the profile of signals, the DM chooses a potentially ran-

dom estimate g, with distribution Γ ∈ ∆ (R). Given the set of beliefs Ps(sN ),

the DM is a maxmin expected utility (MEU) maximizer (Gilboa and Schmei-

dler, 1989), and she evaluates her estimate based on the worst possible be-

lief. That is, for a given loss function u, the DM’s objective is to minimize

the maximal expected loss across all distributions in the set of posteriors.

This preference might be a result of the DM being ambiguity-averse or the

DM’s intention to derive a robust upper bound for the expected loss. For-

mally, she picks an estimate g∗(sN ), with distribution Γ ∗(sN ), to solve the

6Expanding the DM’s belief set by allowing her to consider non-degenerate distribu-
tions over precisions does not affect our results. In particular, the belief set could contain
the true distribution of precisions, G, and, in this sense, we interpret the DM’s model to be
correctly specified.
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following min-max problem:7

min
Γ ∈∆(R)

max
p∈Ps(sN )

Ep
[∫

g
u(g −θ)dΓ

]
,

where we assume that u : R → R+ is strictly convex, minimized at 0, and

smooth with bounded second-order derivatives.

In Section 6, we discuss how our findings depend on the several assump-

tions made above. There, we highlight that results are primarily driven by

our belief updating rule. In the rest of the paper, we are interested in the

asymptotic properties of the DM’s learning behavior as the number of sig-

nals N goes to infinity.

3 Asymptotic Beliefs

In this section, we characterize the DM’s posterior set as the number of sig-

nals grows large. Recall that for any N , the DM observes sN . Given a profile

of conjectured precisions ρ̂N , the DM’s posterior belief is P s
N (sN , ρ̂N ). We

are interested in the asymptotic behavior of the DM’s posterior set, Ps(sN ).

Thus, we define the limit set of posteriors as follows:

Ps
∞(s) = {P : ∃ρ̂ ∈ [ρ,ρ]∞ s.t. P = lim

N→∞
P s
N (sN , ρ̂N )},

where the limit above is in the sense of convergence in distribution. Note

P∞(s) is defined as the set of limits of posteriors that can be generated by

some profile of precisions. This definition is silent about which posterior

beliefs converge. In fact, many non-convergent sequences of posterior be-

liefs exist, but, as we clarify in Section 4, these sequences are immaterial for

our discussion of the asymptotic estimate.

It is worth differentiating the asymptotic behavior of the DM’s posterior

set from the DM’s optimal estimate. We say the DM learns successfully

7Lemma 2 in the Appendix shows that the problem below is well-defined. That is, the
minimum and maximum can be achieved.
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if, for each state θ, Ps
∞(s) = {δθ} for almost all signal realizations. Further,

we will say that the DM’s estimate is consistent if, for each θ, her optimal

estimate converges to the true state for almost all signal realizations.

We first establish a useful benchmark in which the DM is Bayesian and

minimizes expected loss. Then we characterize the limit set of posteriors for

our ambiguity-averse DM, and we finally extend the characterization result

to the case where signals cannot be directly observed.

3.1 A Bayesian Decision Maker

In this section, we consider a Bayesian DM. That is, a DM who entertains a

joint distribution B ∈ ∆[ρ,ρ]∞ over the space of infinite sequences of preci-

sions. We assume that the sequence of precisions is independent of the state

θ. Upon observing signal realizations sN , the Bayesian DM updates her be-

lief about the state using Bayes rule. Note that while the DM is Bayesian,

her belief may be misspecified in the sense that the distribution of precision

sequences she considers, B, may be different from the true distribution.8

The DM seeks to minimize the expected loss conditional on the signal:

min
Γ ∈∆(R)

E
[∫

g
u(g −θ)dΓ

∣∣∣∣∣ sN ]
,

where the expectation is taken with respect to the DM’s subjective belief.

This problem has a solution, which is unique and deterministic by strict

convexity of u. We denote this solution by gB(sN ) ∈ R. Let PB∞(s) be the limit

set of posteriors for the Bayesian DM. The next result shows that this set

contains exclusively the Dirac measure on the true state, and the DM’s esti-

mate is consistent regardless of the possible misspecification or the specific

shape of the loss function. That is, the Bayesian DM learns successfully and

estimates consistently.

8Given the definition of the true data-generating process in Section 2, the true distri-
bution over a sequence of precisions is the product measure over [ρ,ρ]∞ produced by the
CDF G on each dimension.
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Proposition 1. For all states θ ∈ R and for almost all sequences of signals s, we
have PB∞(s) = {δθ} and gB(sN )

a.s.−−→ θ.

By Proposition 1, a Bayesian DM’s estimate almost surely converges to

the true state in our setting. Thus, any deviation from this benchmark is

a consequence of ambiguity aversion and the adopted belief updating rule.

This finding can be attributed to two factors. First, because each of the

signals is at least minimally informative—ρ > 0—despite the potential mis-

specification, the posterior belief of the Bayesian DM always becomes de-

generate. The Bayesian DM correctly believes that the realizations of the

signals are uncorrelated with their precisions, making the posterior mean a

consistent estimate of the true state. Second, employing a common econo-

metrics approach, the asymptotic estimate is equal to the optimal estimate

at the limiting set of beliefs—which, we argued, is degenerate at the true

state. Because the loss function is uniquely minimized at zero, this optimal

estimate is the true state itself, even if the loss function is asymmetric.

The key difference between the Bayesian DM and our ambiguity-averse

DM is the limit set of posterior beliefs they entertain. Next, we characterize

this set for our DM.

3.2 The Game against Nature

It is often useful to interpret the ambiguity-averse DM’s decision problem

as a zero-sum game between the DM and nature. Under this interpreta-

tion, after signals are realized, the DM chooses an estimate for the state

to minimize her expected loss function. Subsequently, with knowledge of

the estimate, nature is free to choose, for each signal, any precision within

the uncertainty set of the DM. The DM’s objective is then to guarantee the

lowest expected loss conditional on the fact that nature acts after her and

to her detriment. Note that, for each possible sequence of signals, sN , and

conjectured precisions, ρ̂N , the corresponding posterior distribution on the

state is normal. Denote the posterior mean by E[θ|sN , ρ̂N ] =
ρ̂N ·sN+ρµµ
ρ̂N ·1N+ρµ

, and
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the posterior variance by V[θ|sN , ρ̂N ] =
(
1− ρ̂N ·1N

ρ̂N ·1N+ρµ

)
1
ρµ

.

By changing the precision of each signal, nature affects both the poste-

rior mean and the posterior variance. It determines variance by choosing

the sum of precisions across signals, and, importantly, it affects the poste-

rior mean by assigning different precisions to different signal realizations.

Given an estimate of the DM, Γ , how does nature act to increase her loss? A

simple heuristic is to notice that the loss function can be approximated by:

E[
∫
g
u (g −θ)dΓ |sN , ρ̂N ] ≈

∫
g
u
(
g −E

[
θ|sN , ρ̂N

])
dΓ +λV[θ|sN , ρ̂N ],

for some constant λ > 0. Thus, nature can increase the DM’s loss by mak-

ing the posterior variance large or by pushing the posterior mean far from

the DM’s estimate. The latter can be interpreted as increasing the poste-

rior bias. From the definition of the posterior variance, we see that as long

as each signal is somewhat informative (ρ > 0), the posterior variance con-

verges to 0 as the number of available signals N increases. Hence, the more

signals the DM receives, the less able nature is to use the posterior variance

against her. In the extreme case of N →∞, for any choice of precisions that

nature may consider, the posterior variance is equal to 0, and nature utilizes

the posterior mean as its only instrument. We now characterize nature’s be-

havior when N →∞, where nature’s choice of what precision to attribute to

which signal exclusively affects the posterior mean. For a fixed sequence of

realized signals s, nature’s strategy is a precision assignment ρ̂ ∈ [ρ,ρ]∞, an

infinite sequence of precisions, one for each information source.

Definition 1. For any sequence of realized signals s, an assignment ρ̂ is a thresh-
old assignment if there exists x ∈ R such that either (i) ρ̂i = ρ for all si > x and
ρ̂i = ρ for all si ≤ x, or (ii) ρ̂i = ρ for all si > x and ρ̂i = ρ for all si ≤ x.

Lemma 1. For any sequence of realized signals s, if ρ̂∗ solve maxρ̂∈[ρ,ρ]∞ u
(
g −

E[θ|s, ρ̂]
)

for some g ∈ R, then ρ̂∗ is a threshold assignment.

Thus, nature chooses a threshold in the space of signal realizations and
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assigns the highest precision to signals above the threshold and the low-

est precision to those below it, or vice-versa. Nature aims to maximize the

posterior bias, which entails either maximizing or minimizing the posterior

mean. The intuition for Lemma 1 follows from the expression of the pos-

terior mean. First, we show that it is without loss of optimality for nature

to assign the same precision to identical signal realizations. We slightly

abuse notation and denote by ρ̂(x) the precision assigned to signal realiza-

tion x. Given an observed empirical distribution of signals, F, this assign-

ment induces posterior mean E[θ|s, ρ̂] =
∫
xρ̂(x)dF(x)∫
ρ̂(x)dF(x)

. Consider nature’s choice

to maximize this expression while keeping the same expected value of con-

jectured precisions
∫
ρ̂(x)dF(x) = c. Because c pins down the denominator

of the expression for the posterior mean, nature chooses an assignment to

maximize the numerator. To do so, nature assigns high-valued signals high

precisions and low-valued signals low precisions, thereby moving the poste-

rior mean towards higher signal realizations. Using the extreme precisions

ρ and ρ is the best way to achieve this, therefore justifying the optimality

of threshold strategies. An analogous strategy is optimal to minimize the

posterior mean.

3.3 Characterization of Asymptotic Beliefs

We now characterize the DM’s set of asymptotic beliefs. As discussed in

the previous section, each one of nature’s strategies corresponds to a plau-

sible belief in the DM’s belief set. As the number of signals goes to infinity,

nature loses the ability to influence the posterior variance, as aggregate in-

formation becomes infinitely precise. However, through the assignment of

precisions to signals, nature can still affect the DM’s posterior bias. This af-

fects the DM’s limit set of beliefs: Her posteriors converge to an interval of

degenerate distributions. The next result characterizes this interval. Recall

that F is the actual distribution over signals given state θ.
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Theorem 1. Define:

m =
ρ
∫ m
−∞xdF(x) + ρ

∫∞
m
xdF(x)

ρF(m) + ρ (1−F(m))
, m =

ρ
∫ m
−∞xdF(x) + ρ

∫∞
m
xdF(x)

ρF(m) + ρ (1−F(m))
.

Then, for almost all sequences of realized signals s,

1. for all sequences ρ̂ ∈ [ρ,ρ]∞,

m ≤ lim
N→∞

infEP sN (sN ,ρ̂N )[θ|sN , ρ̂N ] ≤ lim
N→∞

supEP sN (sN ,ρ̂N )[θ|sN , ρ̂N ] ≤m;

2. the limit set of posteriors is a set of degenerate distributions independent
of s:

Ps
∞(s) = {δb :m ≤ b ≤m}.

Theorem 1 starts by establishing that for any precision assignment, pos-

terior means are bounded by two real numbers: m, m. These numbers

formalize the notion of maximal and minimal posterior means that nature

can achieve asymptotically. The second part of the theorem shows that any

converging posterior approximates a degenerate distribution and that dis-

tribution may have any mean between the boundaries m and m. Notably,

Theorem 1 characterizes the values of these boundaries. For example, m

is generated by the following threshold assignment: give the highest preci-

sion to signals higher thanm and the lowest precision to values below it. By

giving more weight to high signals, nature moves the posterior mean up.

The fixed point m expresses the highest achievable posterior mean. For a

concrete example, see Figure 1 below. It is worthwhile to note that the true

state θ always lies between the two bounds of posterior means, m and m,

and hence, the DM never rules out θ as the number of signals grows.

For an intuition of the definition of m in Theorem 1, suppose we start

with a threshold m that is lower than the posterior mean. Then, increasing

the threshold to m′ > m has two effects. First, by assigning all values in

(m,m′) to low precisions, this precision-weighted sum of signals is reduced.
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When m′ is close to m, this effect is roughly proportional to the marginal

signal, m. Second, since more signals are assigned the lowest precision, the

precision-weighted mass of signals is reduced. This effectively increases the

value of all the inframarginal signals, so it is proportional to the precision-

weighted posterior mean. Because this value was higher than the threshold

to begin with, the second effect dominates the first, and the expected value

of signals increases. This process can be repeated until the marginal signal

equals the posterior mean.9

To see why the ambiguity-averse DM does not learn successfully while

a Bayesian DM does, consider the following example. Assume the Bayesian

DM believes that signals are drawn according to precision sequence ρ =

(ρ1,ρ2, ...). Although Proposition 1 shows that the Bayesian DM’s learns the

truth almost surely, there exist signal realizations such that her posterior

beliefs converge away from the truth. Because our ambiguity-averse DM

considers many of these conjectures, it is possible to find, for almost any

signal realizations, one of such conjectures that leads to a sequence of pos-

teriors converging far away from the truth.

Theorem 1 implies that induced ambiguity about the state does not van-

ish asymptotically. Rather, the DM still entertains a wide range of values

for the state θ even when she has access to an arbitrarily large number of

informative signals. This finding is in stark contrast to quantifiable risk.

In fact, a secondary consequence of the result above is that quantifiable

risk completely disappears even in our setting: all the limit posteriors are

degenerate. In Section 4, we show how the presence of ambiguity in the

limit set of posteriors affects the optimal estimate of the DM. Before that,

we prove that a similar characterization applies even when signals are not

directly observable.

9This parallels the argument that the average cost curve is minimized when it intersects
the marginal cost curve.
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Figure 1: Identifying the Upper Bound

The graphs above depict the procedure for identifying the upper bound with observable signals. In this example,
the initial ambiguity set is fixed at ρ = 0.5 and ρ = 4, while the actual signals are drawn from a standard normal
distribution. The solid curve on the left figure is the mean of the DM’s posterior for different thresholds, which
vary in the horizontal axis. As Theorem 1 establishes, the maximum of this function coincides with the optimal
threshold, m. The picture on the right illustrates the optimal threshold: signal realizations above (below) m are
assigned ρ (ρ), leading to the highest attainable posterior mean.

3.4 General Observables

In this section, we allow the possibility that the DM cannot observe signals

directly.10 Suppose that for each information source i with precision ρi ,

there is a one-to-one mapping between its realized signal si and the observ-

able of the DM, ai . Denote si = sa(ai ,ρi), in which the mapping sa reflects

the way the DM backtracks the unobserved signal from the observed ai .

When sa(ai ,ρi) ≡ ai , we are back to the case of observable signals.

We can use sa to define the following notation, in line with those in

Section 2. We slightly abuse notation and still use F to denote the distri-

bution function of the observables. That is, F(a) =
∫

[ρ,ρ]
Fρ

(
sa(a,ρ)

)
dG(ρ) in

which Fρ ∼ N
(
θ, 1

ρ

)
for each ρ ∈ [ρ,ρ]. We assume that for any ρ ∈ [ρ,ρ],

the integral
∫
sa(a,ρ)dF(a) is finite. Denote the profile of observables by

aN := (a1, ..., aN ). Let La(ρ̂N ,θ) be the likelihood function for observables

and LaN be the set of all likelihood functions.11 Let P a
N (aN , ρ̂N ) be the poste-

10As shown in Theorem 1, our main results do not rely on the unobservability of signals,
which is in contrast to Battigalli et al. (2019).

11To calculate the likelihood function of observables, one can first calculate the likeli-
hood function of signals, which is just a multivariate normal distribution with independent
marginals, and then make use of the one-to-one mapping between signals and observables
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rior given realized observables aN and conjectured precisions ρ̂N , Pa(aN ) be

the set of all posteriors, and Pa
∞(a) be the limit set of posteriors. To guaran-

tee the optimality of threshold assignments as in Lemma 3, we impose the

following assumption on sa.

Assumption 1. There exists a strictly increasing and surjective function β :

R→ R and a weakly increasing function γ : R→ R such that sa(a,ρ) = β(a) +
γ(a)
ρ for all a ∈ R and ρ ∈ [ρ,ρ].

This assumption allows for a broad range of observables relevant to sev-

eral economic applications. Consider the following three examples:

(i) With observable signals, sa(a,ρ) = a, corresponding to β(a) = a and

γ(a) = 0 for all a.

(ii) When the DM observes estimates of Bayesian agents based on their

common initial belief and private signals, which is ai =
ρisi+ρµµ
ρi+ρµ

, we can set

sa(a,ρ) = a+
ρµ(a−µ)

ρ with β(a) = a and γ(a) = ρµ(a−µ) for all a.

(iii) Let θ be the value of a financial asset. In many market microstruc-

ture models (Kyle, 1985; Lambert et al., 2018), risk-neutral investors may

submit a market order to be executed by an uninformed market maker. In

equilibrium, investors face an affine pricing function: p = µ+α +λx, λ > 0.

Then their demand is: ai = 1
2λ

(
ρ(si−µ)
ρ+ρµ

−α
)
. We can set γ(a) = (2λa + α)ρµ,

and β(a) = µ+α + 2λa, since sa(a,ρ) = µ+α + 2λa+
(2λa+α)ρµ

ρ .

Under Assumption 1, we can generalize Theorem 1. Note that the true

state θ still lies between the two bounds of posterior means.

Theorem 2. Let Assumption 1 hold. Define:

m =
ρ
∫ β−1(m)
−∞ sa(x,ρ)dF(x) + ρ

∫∞
β−1(m) s

a(x,ρ)dF(x)

ρF(β−1(m)) + ρ (1−F(β−1(m)))
,

m =
ρ
∫ β−1(m)
−∞ sa(x,ρ)dF(x) + ρ

∫∞
β−1(m) s

a(x,ρ)dF(x)

ρF(β−1 (m)) + ρ (1−F(β−1 (m)))
.

given the profile of conjectured precisions.
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Then, for almost all sequences of realized observables a,

1. for all sequences ρ̂ ∈ [ρ,ρ]∞,

m ≤ lim
N→∞

infEPN (aN ,ρ̂N )[θ|aN , ρ̂N ] ≤ lim
N→∞

supEPN (aN ,ρ̂N )[θ|aN , ρ̂N ] ≤m;

2. the limit set of posteriors is a set of degenerate distributions independent
of a:

Pa
∞(a) = {δb :m ≤ b ≤m}.

4 Asymptotic Estimate

In this section, we characterize the DM’s asymptotic estimate under general

observables. Recall that, for each realization of observables aN , the DM’s

estimate, g∗(aN ), which has distribution Γ ∗(aN ), minimizes her loss function,

considering the worst-case posterior in Pa(aN ). Because observables and

the loss function are arbitrary, obtaining an explicit solution to g∗(aN ) for

finite N is intractable. However, as N goes to infinity, we can make use

of Theorem 2. The main result of this section characterizes the asymptotic

estimate by demonstrating that the following limit exchange holds:

lim
N→∞

arg min
Γ ∈∆(R)

max
p∈Pa(aN )

Ep
[∫

g
u(g−θ)dΓ

]
= arg min

Γ ∈∆(R)
max
p∈Pa∞(a)

Ep
[∫

g
u(g−θ)dΓ

]
.

(1)

Theorem 2 states that Pa
∞(a) = {δm :m ∈ [m,m]} for almost all realizations

of observables. The limit swap above implies that, as N grows, the optimal

estimate converges to the estimate of a DM who does not know the mean

of θ but seeks to minimize loss within the interval [m,m]. This observation

greatly simplifies the characterization: The asymptotic behavior of the es-

timate is pinned down by an extremely simple optimization problem. In

this problem, the DM only cares about how biased her estimate is in the

worst-case scenario. Recall that the DM’s loss increases as her estimate di-

verges from the true state. If her estimate is too far from m, she has a large
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utility loss in the worst case, in which the state is actually m. A symmet-

ric argument holds for m. Therefore, she guarantees minimal loss by being

indifferent between these two extreme possible values of the state. This

intuition is formalized in the next result.

Theorem 3. For all N , g∗(aN ) is deterministic. Moreover, g∗(aN )
a.s.−−→ g∗, where

g∗ is the unique solution to u(g∗ −m) = u(g∗ −m).

Although intuitive, this result depends on the non-trivial exchange of

limits in equation 1. Ex ante, it is not clear that this limit swap works.

First, the limits of optimizers of a sequence of optimization problems are

not guaranteed to coincide with the optimizers of the limit problem. Sec-

ond, not all distributions in the set Pa(aN ) converge. Indeed, there always

exist sequences of precisions such that posterior beliefs diverge. Still, The-

orem 3 confirms the limit swap is valid, and the heuristic argument we

presented goes through formally. We make this argument in two steps, ad-

dressing the two concerns highlighted above.

The first step is to show the DM’s optimization can be approximated by

an optimization that only considers the means of posterior distributions as

N grows large. For any finite N , the DM’s loss is clearly affected by higher

moments of the posteriors, but because quantifiable risk vanishes as the

number of observable information sources grows, the mean progressively

becomes the only relevant moment. The second step relies on an extension

of the Glivenko-Cantelli theorem. It provides the important result that the

sequence g∗(aN ) is bounded. Recall, from part 1 of Theorem 2, that non-

converging posteriors are bounded. Thus, intuitively, for eachN , the payoff
obtained by a non-convergent sequence can be bounded by the payoff of

two convergent sequences. Consequently, restricting attention to conver-

gent sequences turns out to be without loss of generality. We prove these

two steps are sufficient to guarantee the convergence of g∗.

Theorem 3 shows the asymptotic estimate is typically inconsistent. To

illustrate, recall that the interval [m,m] in Theorem 2 is independent of

the particular choice of the loss function. The interval is determined by
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the initial ambiguity and the mapping from observables to signals sa. By

contrast, the asymptotic estimate is a consequence of the shape of the loss

function, u, on this interval. This demonstrates that the DM’s estimate is

consistent only in knife-edge cases. Moreover, even in such cases, slightly

perturbing either u or sa would again lead to an inconsistent asymptotic

estimate.

Finally, it is worth noting that the DM does not benefit from randomiza-

tion. This is in contrast with most of the work on decision-making under

maxmin expected utility. In our setting, the optimality of deterministic es-

timates follows from the richness of the action space and the convexity of

the loss function. In the literature, either randomized actions are directly

excluded (Tillio et al., 2017) or assuming deterministic actions is proved to

be with loss of generality (Bose and Renou, 2014; Gershkov et al., 2023).

One exception is Tang and Zhang (2021).

4.1 Observable signals: Loss Symmetry

We now focus on the case in which signals are directly observable to illus-

trate how the shape of the loss function affects consistency of the estimate.

A loss function is symmetric if u(x) = u(−x) for any real number x. We show

that when signals are directly observable, the symmetry of the loss function

plays a prominent role in the asymptotic estimate. Indeed, by Theorem 3,

we have that, under symmetric losses, g∗ = m+m
2 . In turn, normality implies

the true distribution of signals F is symmetric around the true state θ. In

this case, the DM’s estimate of the state is consistent. The next result for-

malizes this relationship between the symmetry of the loss function and the

consistency of the estimate and proves a partial converse.

Corollary 1. Fix a state θ and assume signals are observable. If u is symmetric,
then g∗(sN )

a.s.−−→ θ for any perceived precision set [ρ,ρ]. If u is not symmetric,

then there exists a perceived precision set [ρ,ρ] such that g∗(sN )
a.s.−−→ g∗ , θ.12

12Note that the DM does not learn successfully, even if her estimate is consistent under
symmetric losses and observable signals. Moreover, the consistency of the DM’s estimate
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The following example illustrates Corollary 1.

Example: Asymmetric Quadratic Loss Let the loss function be given by

u(g −θ) =

(g −θ)2 if g ≥ θ

λ(g −θ)2 if g < θ
.

with λ > 0. That is, the DM might perceive losses differently based on

whether the state θ is over- or under-estimated. For example, if λ > 1, she

is less concerned about overestimating than underestimating the true state.

This difference may arise from various factors. For instance, a health official

estimating disease prevalence might face greater consequences for underes-

timating transmission rates, while a product developer could incur signif-

icant losses from overestimating market demand and developing a costly

product that fails to be marketed. Following Theorem 3, the optimal es-

timate satisfies g∗ = m+
√
λm

1+
√
λ

. However, as argued in the previous section,

observable signals imply m+m
2 = θ, which does not equal g∗ whenever λ , 1.

The above example highlights that the loss function directly affects the

DM’s estimate, even asymptotically. As outlined in Section 3.1, a Bayesian

DM’s posterior belief converges to a Dirac measure on the true state. In

a setting with multiple Bayesian DMs, as the available information grows,

regardless of their loss functions, Bayesian DMs agree on the optimal es-

timate of the state. By contrast, our DM’s asymptotic estimate continues

to depend on the particular form of the loss function. Thus, ambiguity

about the precision of information sources, coupled with potentially dif-

ferent loss functions, can rationalize disagreement between well-informed

experts who aim to find out the truth, such as scientists with access to the

same large dataset.

depends on the symmetry of the loss function and the symmetry of the normal distribution,
even under observable signals.
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5 Implications

We now turn to various implications of our main result.

5.1 Comparative Statics of Ambiguity

First, we illustrate that contrary to intuition, making all signals more pre-

cise is not necessarily beneficial to the DM. For simplicity, we consider the

case of symmetric loss functions and observable signals. Recall that by The-

orem 1, the limit set of posteriors is a set of degenerate distributions δb with

m ≤ b ≤ m. Note that m and m only depend on the fraction of the highest

and the lowest possible precisions and not on their absolute values because

they can be rewritten as

m =

∫ m
−∞xdF(x) + η

∫∞
m
xdF(x)

F(m) + η (1−F(m))
, m =

η
∫ m
−∞xdF(x) +

∫∞
m
xdF(x)

ηF(m) + (1−F(m))
,

where η = ρ
ρ . The following proposition shows that both m and m change

with η monotonically.

Proposition 2. Let η = ρ
ρ ∈ (1,+∞). Under observable signals, m is monoton-

ically increasing in η and m is monotonically decreasing in η. Moreover, when
η→ +∞, we have m→∞ and m→−∞; when η→ 1, we have m−m→ 0.

In Proposition 2, η = ρ
ρ can be interpreted as the degree of ambiguity in

the set of perceived precisions [ρ,ρ]. When more ambiguity exists regarding

precisions of signals ex-ante, the limit set of posteriors expands, and hence,

ambiguity regarding states is greater ex-post. We now examine the welfare

implications of these comparative statics. By Corollary 1, under observable

signals, a DM with a symmetric loss function estimates the state correctly at

the limit. Thus, utility depends solely on the size of the limit set of posterior

means, that is, m−m. Corollary 2 directly follows from Proposition 2.

Corollary 2. Let u be symmetric. Under observable signals, as η increases, the
DM is strictly worse off asymptotically.
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Corollary 2 reveals a counterintuitive implication. Increasing ρ and/or

ρ in a manner that leads to a higher η makes the DM strictly worse off.

Therefore, even making all signals more precise is not necessarily beneficial

to the DM and might, in fact, be detrimental to her.

5.2 Comparative Statics of the True Distribution

In this section, we study how asymptotic ambiguity and the DM’s estimate

change as we vary the true distribution of precisions. Once again, for ease

of exposition, assume signals are directly observable. We fix the perceived

precisions [ρ,ρ], and we let G andH be distributions of true precisions gen-

erating asymptotic belief boundaries {mG,mG} and {mH ,mH }, respectively.

Proposition 3. If G first-order stochastically dominates H , then the asymptotic
belief set is larger for H . That is, for any state θ ∈ R,

H �FOSD G =⇒ mH ≤mG ≤mG ≤mH .

Intuitively, if the true precision of information sources is lower, the sig-

nals they produce become more scattered. Consequently, this widens the

range of potential posterior probabilities by thickening the tails of the sig-

nal distribution. This result has implications for asymptotic estimates. As

detailed in Section 3.1, while the asymptotic loss for a Bayesian DM remains

zero, irrespective of her knowledge about precision distributions, this dis-

tribution becomes pivotal for an ambiguity-averse DM. Certain precision

distributions can result in the ambiguity-averse DM making significantly

large estimation errors. Corollary 3 offers sufficient conditions to generate

such errors.

Corollary 3. Assume signals are observable and u is the asymmetric quadratic
loss function in Section 4.1 with any λ , 1. For any η > 1 and any constant
C > 0, true distributions of precisions G exist such that |g∗ −θ| > C.
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5.3 Aggregating Estimates

Finally, we study the problem of an ambiguity-averse econometrician who

aims to estimate the state by aggregating estimates from many Bayesian

agents. The agents share the same initial belief about the state, θ ∼N
(
µ, 1

ρµ

)
,

but have access to different private information sources. The econometri-

cian knows the initial belief but does not know the precision of the individ-

ual sources. This setup finds practical relevance across various scenarios.

For instance, consider a healthcare official who estimates disease preva-

lence in a region using hospital reports but is uncertain about their data-

collection protocols.

Conditional on the realization of θ, agent i receives a private signal si =

θ + εi , where εi ∼ N
(
0, 1
ρi

)
is independent noise. We consider the case in

which each agent and the econometrician attempt to estimate the realized

value of θ to minimize the mean-squared error. Given the initial belief and

the private signal, the optimal Bayesian estimate for agent i is E[θ|ρi , si] =
ρµµ+ρisi
ρµ+ρi

. These actions are observed by the econometrician.

Although each agent knows the precision of their private signal, the

econometrician does not and considers a set of possible precisions
[
ρ,ρ

]
.

Because each action is a convex combination of the private signal si and the

mean of the initial belief µ, an econometrician who intends to estimate θ

will first have to transform the actions back to signals. For a conjectured

precision ρ̂i , the recovered signal will be sa (ai , ρ̂i) = ai +
ρµ
ρ̂i

(ai −µ).

Applying Theorem 1, the boundaries of the limit set of posteriors are de-

fined by a fixed point similar to the example with observable signals. How-

ever, here, the econometrician backtracks realized signals from observed

estimates, leading to a bias in recovered signals. Because of this bias, and as

a corollary of Theorem 3, the econometrician’s estimation converges away

from the truth almost surely.

To give an example where we can clearly characterize the optimal esti-

mate and analyze comparative statics, we continue with the following as-

sumption.
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Assumption 2. For some ρ∗ ∈ [ρ,ρ], G = δρ∗ .

Although the econometrician might consider different precisions for each

signal, under Assumption 2, in reality, all signals share the same precision.

We say the econometrician overreacts if |g∗−µ| > |θ−µ| and underreacts if the

inequality is reversed. Put simply, an estimator overreacts to information

when it deviates further from the mean of initial beliefs than the true state

does.

Proposition 4 (Guess Characterization). Let sa (ai , ρ̂i) = ai +
ρµ
ρ̂i

(ai −µ) and the

loss function be quadratic. Under Assumption 2, g(An)
a.s.−−→ g∗, and

1. If µ = θ, then g∗ = θ;

2. If µ , θ, then there exists ρ̃ < ˜̃ρ such that

• If ρ∗ ≤ ρ̃, then the DM underreacts;

• If ρ∗ ≥ ˜̃ρ, then the DM overreacts;

• If ρ̃ < ρ∗ < ˜̃ρ, then the DM underreacts when |θ − µ| is small and
overreacts when |θ −µ| is large,

where: ρ̃ =
2ρρ

ρ+ ρ
and ˜̃ρ = ρF (m( ˜̃ρ,µ)) + ρ (1−F (m( ˜̃ρ,µ)) .

Proposition 4 reveals that whether the DM over- or underreacts depends

on the true precision of the signals. Essentially, the estimation involves

the DM attempting to infer the mean of the unobserved signals from the

mean of observed actions. Because signals are unbiased, their unobserved

mean is effectively θ. When ρ∗ is high, θ must be relatively close to the

mean of actions because agents place a high weight on their signals, and

vice versa if ρ∗ is low. However, the econometrician does not know the true

precision, so she backtracks signals from actions using roughly the same

method regardless of ρ∗, leading to over or under-reaction.

Lastly, when the initial belief is extremely imprecise, ρµ ≈ 0, actions re-

main unaffected by the initial belief, resulting in straightforward backtrack-

ing of signals and correct estimation by the econometrician. Conversely,

24



when the precision of the initial belief grows to infinity, ρµ→∞, the econo-

metrician estimates correctly by simply following the initial belief. For in-

termediate values, however, the estimate is wrong almost surely. In other

words, the accuracy of the estimate is not monotonic with the precision of

the initial belief: Better information ex-ante does not guarantee a more cor-

rect estimate asymptotically.

6 Discussion
To maintain tractability and clarity, our analysis has relied on four main

assumptions: (i) The DM adopts prior-by-prior updating; (ii) the DM only

knows the highest possible and lowest possible precisions of each informa-

tion source and nothing else; (iii) both the state and signals follow normal

distributions; and (iv) the DM is a MEU maximizer regarding ambiguity. In

this section, we briefly argue our main result that ambiguity does not van-

ish asymptotically remains valid when we relax the last three assumptions.

Hence, the essential assumption is the updating rule under ambiguity.

Updating Rule First, we note our result does rely on the updating rule un-

der ambiguity. Since we assume an unambiguous initial belief and ambigu-

ous likelihood functions, the existence of ambiguity in posterior beliefs re-

sults from the dilation property (Seidenfeld and Wasserman, 1993; Shishkin

and Ortoleva, 2023) of the prior-by-prior updating rule.13 Another alterna-

tive to the prior-by-prior updating rule is the maximum likelihood updating

rule, which also satisfies the dilation property. Unlike prior-by-prior updat-

ing, where the DM applies Bayes’ rule to the entire set of initial beliefs, the

DM with the maximum likelihood updating rule would discard initial be-

liefs that do not ascribe the maximal probability to the observed signals and

update the remaining initial beliefs according to Bayes’ rule. We conjecture

that it will generically generate a single posterior (a unique maximizer of

13Our results may not hold under updating rules that restrict or rule out dilation, such
as the proxy updating rule of Gul and Pesendorfer (2021) and the contraction updating
rule of Tang (2024).
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the likelihood problem) as the number of signals goes to infinity, so ambi-

guity should vanish.14

There are also intermediate cases between full Bayesian and maximum

likelihood updating. Under the likelihood-ratio updating rule in Epstein

and Schneider (2007) and the relative maximum likelihood updating rule

in Cheng (2022), the set of asymptotic beliefs would be either an intermedi-

ate set between or a convex combination of those under prior-by-prior and

maximum likelihood updating, and hence our qualitative results will be

maintained. More recently, Cheng (2024) studies when data can improve

robust decisions in terms of the expected payoff under the true distribu-

tion. He shows that it is necessary and sometimes sufficient for the revision

rule to accommodate the true distribution. In our setting, one such revision

rule is to retain a state if and only if it is close enough to the sample mean.

He shows that ambiguity vanishes asymptotically under this revision rule

(Proposition 2 in Cheng (2024)).

Belief Set In the main analysis we have assumed that the DM’s belief set

consists of degenerate distributions over all possible sequences of precisions

in [ρ,ρ]. This can be interpreted as a fully ambiguous belief set. Our main

results remain qualitatively valid for other specifications of the belief set, so

long as nature has enough flexibility to condition the (distribution of) the

sequence of precisions on realized signals.15 Consider the following two

examples and note that, in both cases, nature can only assign two different

(distributions of) precisions to each signal.

First, suppose the DM believes that there are two groups of information

sources. Group 1 consists of a fraction α ∈ (0,1) of information sources with

shared high precision ρ, and Group 2 consists of fraction 1−α with shared

14Under maximum likelihood updating, the DM maximizes the expected likelihood
function of signals under the initial belief over states. As a result, the optimal precision
for a particular information source depends on the entire sequence of realized signals and
it is difficult to leverage usual asymptotic results.

15As an example where this condition fails, suppose the DM’s belief set is the set of
degenerate distributions over sequences of identical precisions. In this case, she will learn
the true state eventually. We thank an anonymous referee for this example.

26



low precision ρ. That is, given any sequence of realized signals, the DM

belief sets consists of sequences of precisions in {ρ,ρ}∞ with a fraction α

taking the value ρ and a fraction 1 − α taking the value ρ. Although the

belief set is much more restrictive than the fully ambiguous one we have

focused on, nature can still induce the DM to have a relatively high (low)

posterior mean of the state by assigning high signals to Group 1 (Group 2)

subject to the new constraint. Hence, the DM does not learn successfully.

Second, we consider an example where the DM holds a non-degenerate

belief over the sequence of precisions in the belief set. For any fixed ρ1 >

ρ2 > ρ3 > ρ4 > 0 and α ∈ (0,1), we assume that the precision of each infor-

mation source is independently drawn from some distribution that can be

eitherQ orQ, whereQ assigns probability α to ρ1 and 1−α to ρ2, andQ as-

signs probability α to ρ3 and 1−α to ρ4. In other words, the belief set can be

interpreted as the set of all sequences of independent distributions {Q,Q}∞.

Fix a sequence of signals s. Inspired by the notion of ρ̂, define Q̂ ∈ {Q,Q}∞

as the conjectured sequence of precision distributions. To show that am-

biguity does not vanish, it suffices to show that the limit set of posterior

means contains at least two elements. Consider the following two simple

threshold assignments Q̂∗ and Q̂∗∗ of nature: Q̂∗i = Q if si ≥ 0 and Q̂∗i = Q if

si < 0; Q̂∗∗i = Q if si ≥ 0 and Q̂∗∗i = Q if si < 0. We can show that posterior

means resulting from these two assignments do not converge to the same

limit and hence learning is not successful.

Distributions We have assumed that the state and signals are normally

distributed. For general distributions, the precision of each signal is no

longer fully captured by the reciprocal of its variance. To extend our model

to other distributions, we can assume the DM considers a set of likelihood

functions for each information source. As in the main model, each alloca-

tion of likelihoods to information sources defines a belief for the DM. Under

prior-by-prior updating, for each belief, the DM forms a posterior on the

state. The analysis would be less tractable since higher moments of the pos-

terior no longer necessarily vanish asymptotically, but we conjecture that
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as long as two different beliefs result in two different posterior means, our

results that ambiguity does not vanish hold. We leave the detailed analysis

for future research.

Ambiguity Preferences Finally, we can consider more general preferences

under ambiguity. As long as the ambiguity the DM faces takes the form

of a set of beliefs over the state and signals, and she adopts the prior-by-

prior updating rule upon receiving signals, Theorem 2 still holds. Indeed,

our analysis of asymptotic beliefs does not rely on the specification of the

DM’s ambiguity preferences. For instance, the DM might use the α-maxmin

expected utility (α-MEU) criterion (Hurwicz, 1951), where she considers

the weighted average of each act’s worst-case and best-case expected utility.

With this preference, the DM might not be ambiguity-averse.

Appendix: Proofs

Proof of Proposition 1

We first show that PB∞(s) = {δθ}. Fix a realization of the state, θ ∈ R. We

let θN represent the random variable that is distributed according to the

subjective Bayesian posterior of the DM after observing signal sN . Con-

ditioning on any realized sequence of precisions, ρ̂N , we know θN is nor-

mally distributed with mean µ(sN , ρ̂N ) =
ρ̂N ·sN+ρµµ
ρ̂N ·1N+ρµ

, and variance σ2(ρ̂N ) =(
1− ρ̂N ·1N

ρ̂N ·1N+ρµ

)
1
ρµ

. We can then write the characteristic function of θN , for

any N and t ∈ R:

ΨN (t) ≡ E
[
eitθ

N ]
= EB

[
E
[
eitθ

N
|ρ̂N

]]
= EB

[
eitµ(sN ,ρ̂N )− t22 σ

2(ρ̂N )
]
,

where the first equality follows from the law of iterated expectations, and

the second equality holds because of the normality of θN conditional on ρ̂N .
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We now take limits on this function to obtain that:

lim
N→∞

ΨN (t) ≡ lim
N→∞

EB
[
eitµ(sN ,ρ̂N )− t22 σ

2(ρ̂N )
]

= EB
[

lim
N→∞

eitµ(sN ,ρ̂N )− t22 σ
2(ρ̂N )

]
= eitθ.

The exchange of the limit operator and the expectation operator above fol-

lows from the dominated convergence theorem, since |eitµ(sN ,ρ̂N )− t22 σ
2(ρ̂N )| ≤

|eitµ(sN ,ρ̂N )| = 1, by Euler’s formula. For the last equality, note that σ (ρ̂N )→ 0

for all possible sequences of precision because ρ > 0. Moreover,

µ(sN , ρ̂N ) =
ρ̂N · sN + ρµµ

ρ̂N ·1N + ρµ
=

ρ̂N ·1N

ρ̂N ·1N + ρµ
θ +

ρ̂N ·ε̂N+ρµµ
N

ρ̂N ·1N+ρµ
N

a.s.−−→ θ,

by the strong law of large numbers for independent random variables with

mean zero. Thus, eitµ(sN ,ρ̂N )− t22 σ
2(ρ̂N ) a.s.−−→ eitθ by the continuous mapping

theorem. We have now proved ΦN (t) converges pointwise to eitθ. Levy’s

continuity theorem then implies θN
p
−→ θ and hence PB∞ = {δθ}.

To prove the estimate’s consistency, denote the sample mean of signals

by µ(sN ) = 1
N

(
sN ·1N

)
. Because each εi is independent from one another,

and their variances are uniformly bounded, a strong law of large number

holds and implies µ(sN )
a.s.−−→ θ. Given that µ(sN ) is a feasible estimate:

E
[
u
(
g∗(sN )−θ

) ∣∣∣sN ]
≤ E

[
u
(
µ(sN )−θ

) ∣∣∣sN ] a.s.−−→ 0

Because ε is arbitrary, we have proved E[u(g∗(sN )−θN )]
a.s.−−→ 0. Since u is

strictly convex and has a unique minimizer at 0, we obtain |g∗(sN )−θN | a.s.−−→
0, which implies g∗(sN )

a.s.−−→ θ.

We prove an auxiliary result, which establishes that the supremum in

Nature’s problem and the infimum in the DM’s problem are both achieved.

Lemma 2. For each realization aN of observables, there exist g∗(aN ) ∈ R and
p∗(aN ) ∈ Pa(aN ) such that:
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inf
Γ ∈∆(R)

sup
p∈Pa(aN )

Ep
[∫

g
u(g −θ)dΓ

]
= Ep∗(aN )

[
u
(
g∗(aN )−θ

)]
.

Proof of Lemma 2

We start by showing that it is without loss to focus on a deterministic es-

timates. For that, for any fixed aN , consider a sequence Γ n of potentially

stochastic estimates such that:

sup
p∈Pa(aN )

Ep
[∫

g
u (g −θ)dΓ n

]
n→∞−−−−−→ inf

Γ ∈∆(R)
sup

p∈Pa(aN )
Ep

[∫
g
u (g −θ)dΓ n

]
.

Fix any posterior p. We then have, by convexity of u:

Ep
[
u

(∫
g
gdΓ n −θ

)]
≤ Ep

[∫
g
u (g −θ)dΓ n

]
.

By taking supremum on both sides, we obtain:

sup
p∈Pa(aN )

Ep
[
u

(∫
g
gdΓ n −θ

)]
≤ sup
p∈Pa(aN )

Ep
[∫

g
u (g −θ)dΓ n

]
n→∞−−−−−→ inf

Γ ∈∆(R)
sup

p∈Pa(aN )
Ep

[∫
g
u (g −θ)dΓ

]
,

which implies that the left-hand side also converges to the infimum. We

henceforth focus attention on deterministic estimates. Our next step is to

show that the sup of Nature’s problem is achieved. For that, notice that any

p ∈ Pa(aN ) is distributed normally according to:

N
∑N

i=1 ρ̂is
a(ai , ρ̂i) + ρµµ∑N

i=1 ρ̂i + ρµ
,

1−
∑N
i=1 ρ̂i∑N

i=1 ρ̂i + ρµ

 1
ρµ

 .
Consider a sequence of such posteriors, which are parameterized by the

conjecture ρ̂n =
(
ρ̂n1 , ρ̂

n
2 , ..., ρ̂

n
N

)
. We know that, because ρ̂n is a finite sequence
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of numbers bounded between [ρ,ρ], this sequence of precision conjectures

has a converging subsequence:

ρnk → ρ̂,

for some ρ̂ ∈ [ρ,ρ]N . Let p be the posterior obtained by conjecture ρ̂. Now,

it is clear that:

Epnk [θ] =

∑N
i=1 ρ̂

nk
i sa(ai , ρ̂

nk
i ) + ρµµ∑N

i=1 ρ̂
nk
i + ρµ

→
∑N
i=1 ρ̂is

a(ai , ρ̂i) + ρµµ∑N
i=1 ρ̂i + ρµ

= Ep[θ],

and

Vpnk [θ] =

1−
∑N
i=1 ρ̂

nk
i∑N

i=1 ρ̂
nk
i + ρµ

 1
ρµ
→

1−
∑N
i=1 ρ̂i∑N

i=1 ρ̂i + ρµ

 1
ρµ

= Vp[θ].

It is well known that the convergence in mean and variance above im-

plies pnk
d−→ p. We have then shown that any sequence in Pa(aN ) has a weakly

converging subsequence with limit in Pa(aN ). Thus, Pa(aN ) is weakly com-

pact.

Fix any g ∈ R. Because all distributions p ∈ Pa(aN ) are Gaussian with

an uniformly bounded mean and variance, and because u has a bounded

second-derivative, and is thus bounded above by a polynomial, for each

ε > 0, there must exist a value K > 0 such that:

sup
p∈Pa(aN )

Ep[u(g −θ)1|g−θ|>K ] ≤ ε
2
.

Thus, take a sequence pn such that Epn[u(g −θ)] converges to the supre-

mum. By our previous argument on sequential compactness, it is without
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loss of generality, up to a subsequence, to let pn
d−→ p∗ ∈ Pa(aN ). Then:

ε
2
≥ Epn[u(g −θ)]−Epn[u(g −θ)1|g−θ|≤K ]

n→∞−−−−−→ sup
p∈Pa(aN )

Ep[u(g −θ)]−Ep∗[u(g −θ)1|g−θ|≤K ]

≥ sup
p∈Pa(aN )

Ep[u(g −θ)]−Ep∗[u(g −θ)],

where the first inequality comes from the definition of K ; the first compo-

nent after the limit follows from pn being a sequence that takes the objective

function to the sup; the second component after the limit follows from pn

weakly converging to p∗ and u(g −θ)1|g−θ|≤K being a bounded function. Fi-

nally, the last inequality follows from u being non-negative. Because ε is

arbitrary, we obtain that E∗p[u(g −θ)] = supp∈Pa(aN )Ep[u(g −θ)], so the maxi-

mum is achieved.

To conclude, we prove that the inf of the DM’s problem is achieved. Take

a sequence gn of nonrandom estimates such that

max
p∈Pa(aN )

Ep[u(gn −θ)]→ inf
g∈R

max
p∈Pa(aN )

Ep[u(g −θ)].

Notice that gn cannot be unbounded. Indeed, in that case:

max
p∈Pa(aN )

Ep[u(gn −θ)] ≥ max
p∈Pa(aN )

u(gn −Ep[θ])→∞,

whereas for any fixed g the DM can obtain a finite loss, since the max is

achieved. Therefore, gn is bounded and, thus, we can assume it to be con-

vergent, up to a subsequence. Let gn → g∗. Notice that, because the se-

quence gn is bounded, we can choose a compact set G such that gn ∈ G for

all n. Then, we can again argue that for all ε > 0, there exists a large number

K with:

sup
p∈Pa(aN ),g∈G

Ep[u(g −θ)1|g−θ|>K ] ≤ ε
2
.

Take the sequence pn such that pn solves the maximization problem for
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each gn. The previous argument ensures the existence, up to a subsequence,

of p∗ such that pn
d−→ p∗. Therefore:

0 ≤ Epn[u(gn −θ)]−Ep∗ [u(gn −θ)]→ inf
g∈R

max
p∈Pa(aN )

Ep[u(g −θ)]−Ep∗ [u(g∗ −θ)] ,

where the inequality follows from pn maximizing losses for gn, the first

expression after the limit follows from the definition of gn, and the second

expression follows from the dominated convergence theorem and the fact

that gn is bounded and u is bounded above by a polynomial. We have thus

proved that the inf is also achieved.

Below we prove a more general version of Lemma 1 by allowing for gen-

eral observables introduced in Section 3.4.

Lemma 3. For any sequence of realized observables a, if Assumption 1 holds
and ρ̂∗ solve maxρ̂∈[ρ,ρ]∞ u

(
g −E[θ|a, ρ̂]

)
for some g ∈ R, then ρ̂∗ is a threshold

assignment.

Proof of Lemma 3

Since u is strictly convex and minimized at 0, it is easy to see that ρ̂∗ solves

either maxρ̂∈[ρ,ρ]∞E[θ|a, ρ̂] or minρ̂∈[ρ,ρ]∞E[θ|a, ρ̂] .

Given an infinite sequence of observables, a, we have that:

E[θ|a, ρ̂] =
∑
i ρ̂is

a(ai , ρ̂i)∑
i ρ̂i

.

First, we show that it is without loss of generality to assume that if two

observables are identical, the precision assigned to them is also identical:

ai = aj =⇒ ρ̂i = ρ̂j . Fix ρ̂. For any A ∈ R, let A = {j : aj = A}, and consider

ρ̂′i =
∑
j∈A ρ̂j
|A| , for all i ∈ A. Let ρ̂′i = ρ̂i , for i <A. Then:
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E[θ|a, ρ̂] =
∑
i∈A ρ̂is

a(ai , ρ̂i) +
∑
i<A ρ̂is

a(ai , ρ̂i)∑
i∈A ρ̂i +

∑
i<A ρ̂i

=
∑
i∈A (ρ̂iβ(A) +γ(A)) +

∑
i<A ρ̂is

a(ai , ρ̂i)

|A|
∑
i∈A
|A| ρ̂i +

∑
i<A ρ̂i

=
|A|

(∑
i∈A ρ̂i
|A| β(A) +γ(A)

)
+
∑
i<A ρ̂is

a(ai , ρ̂i)

|A|
∑
i∈A
|A| ρ̂i +

∑
i<A ρ̂i

=

∑
i∈A ρ̂

′
is

a(ai , ρ̂′i) +
∑
i<A ρ̂is

a(ai , ρ̂i)∑
i∈A ρ̂

′
i +

∑
i<A ρ̂i

= E[θ|a, ρ̂′],

where the second equality follows from Assumption 1 and the definition

of A. Because A was arbitrary, we have shown that we can restrict atten-

tion to assignments that give the same precision to identical observables.

That allows us to define assignments as allocations of precisions to realized

observables. We henceforth consider empirical distributions of observables

F ∈ ∆(R) generated by the sequence of observables a, and we abuse notation

to write ρ̂ : R→ [ρ,ρ] as a precision assignment. In the space of distribu-

tions over observables, we can rewrite:

v(ρ̂) ≡ E[θ|a, ρ̂] =
∫
ρ̂(x)sa(x, ρ̂(x))dF(x)∫

ρ̂(x)dF(x)
.

Fix a value M ∈ [ρ,ρ] and consider the problem:

max
ρ̂

{
v(ρ̂) :

∫
ρ̂(x)dF(x) =M

}
=

1
M

max
ρ̂

{∫
ρ̂(x)sa(x, ρ̂(x))dF(x) :

∫
ρ̂(x)dF(x) =M

}
where the last equality is justified because we are equating the denominator

of v to M. By the Lagrange multiplier theorem in Banach spaces, we obtain
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that there is λ ∈ R such that, for almos all x ∈ suppF:

ρ̂(x) ∈ arg max
ρ∈[ρ,ρ]

{ρsa(x,ρ)−λ(ρ −M)}.

By Assumption 1, this problem can be rewritten as:

ρ̂(x) ∈ arg max
ρ∈[ρ,ρ]

{ρβ(x) +γ(x)−λ(ρ −M)}.

Because β is increasing, the objective function of each of these optimiza-

tions is supermodular in (ρ,x), so ρ̂ is increasing with x, according to Top-

kis’ lemma. Because each of these programs is linear, the solution can be

assumed to be an extreme point of the interval [ρ,ρ]. Therefore, for eachM,

the solution is a threshold assignment. Thus, maximizing over M’s implies

that the solution must also be a threshold assignment. Clearly, the symmet-

ric result holds for minimization problem. This completes the proof.

Lemma 1 is a special case of Lemma 3 and hence is also proved.

Proof of Theorem 1 and Theorem 2

Theorem 1 is a special case of Theorem 2, so we provide a proof for the more

general result.

For any realization of observables aN , let FN ∈ ∆(R) be the empirical dis-

tribution of observables. We abuse notation to write sa(aN , ρ̂N ) as the vector

in which the i-th entry is sa(aNi , ρ̂
N
i ). Given a conjecture ρ̂N , we know the

backtracked signals sa(aNi , ρ̂
N
i ) are jointly normal with the state, allowing us

to calculate the posterior mean as:

E[θ|aN , ρ̂N ] =
ρ̂N · sa(aN , ρ̂N ) + ρµµ

ρ̂N ·1+ ρµ
.

Define:

mN ≡ min
ρ̂∈[ρ,ρ]N

E[θ|aN , ρ̂N ] , mN ≡ max
ρ̂∈[ρ,ρ]N

E[θ|sN , ρ̂N ].
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The above mN and mN are (random) bounds on posterior means. As-

sume that ρN and ρN are the minimizer and maximizer, respectively.

By the proof of Lemma 3, let ρ̂ : R → [ρ,ρ] be a precision assignment.

Let F be the true distribution of observables. Again, given a precision as-

signment, the posterior mean can be written as:

E[θ|ρ̂] =
∫
ρ̂(x)sa(x, ρ̂(x))dF(x)∫

ρ̂(x)dF(x)
.

Finally, let:

m = min
ρ̂:R→[ρ,ρ]

E[θ|ρ̂] and m = min
ρ̂:R→[ρ,ρ]

E[θ|ρ̂].

We start the proof by showing, in Step 1, that the random bounds on

posterior means converge to m and m asymptotically. Then, we show that

them andm are indeed asymptotic bounds of posterior means, proving part

1 of the Theorem in Step 2.

Step 1. mN
a.s.−−→m and mN

a.s.−−→m.

Step 1.1. m =
ρ
∫ β−1(m)
−∞ sa(x,ρ)dF(x)+ρ

∫∞
β−1(m) s

a(x,ρ)dF(x)

ρF(β−1(m))+ρ(1−F(β−1(m))) .

By the proof of Lemma 3, m is achieved by a threshold assignment. We

can then write the corresponding optimization problem by

m = max
a∈R
{v(a)} ,

where v(a) =
ρ
∫ a
−∞ sa(x,ρ)dF(x)+ρ

∫∞
a

sa(x,ρ)dF(x)

ρF(a)+ρ(1−F(a)) .

Using Assumption 1, the first order condition leads to:

β(a) =
ρ
∫ a
−∞ sa(x,ρ)dF(x) + ρ

∫∞
a

sa(x,ρ)dF(x)

ρF(a) + ρ (1−F(a))
,
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which implicitly defines the threshold value a, in the space of observables,

that solves that maximization. If a is indeed the optimal threshold, then

by noticing that the right-hand side of the equation above is v(a) = m, we

obtain m = β(a), which proves the expression for m in the statement of the

theorem. In what follows, we prove that a as defined above exists and is the

optimal threshold.

We start by showing that the objective function v is quasiconcave, so that

the first order condition is sufficient. The first derivative of v can be written

as:

v′(a) = (v(a)− β(a))
(ρ − ρ)f (a)

ρF(a) + ρ (1−F(a))
.

First, notice that because the second term is positive for all a ∈ R, the

sign of v′ is determined by v(a) − β(a). This implies that v is quasiconcave:

If there is a such that v′(a) < 0, then v′(a) < 0 for all a ≥ a. To see this, assume

there is a such that v′(a) < 0 and, to obtain a contradiction, let there be a > a

with v′(a) ≥ 0. Let b = min{x ∈ [a,a] : v′(x) ≥ 0}. By continuity of v, b is

well-defined and v′(b) = 0—that is, v(b) = β(b). We then have:

0 = v(b)− β(b) < v(b)− β(a) = v(a)− β(a) +
∫ b

a
v′(x)dx < 0.

Where the first inequality above comes from monotonicity of β, and the sec-

ond one holds because v′(a) < 0 implies v(a) < β(a). We have thus obtained

a contradiction.

We now show that the solution to the first order condition above, a, ex-

ists and is unique.

As a → −∞, v(a) →
∫
sa(x,ρ)dF(x), which is finite by assumption. Be-

cause β is surjective by Assumption 1 and strictly increasing, that implies

that we can find a sufficiently small number a such that v(a)− β(a) > 0, im-

plying v′(a) > 0. Notice that the same should be true for all a ≤ a, so that v

is a strictly increasing function in (−∞, a].
On the other hand, as a→∞, again we have v(a)→

∫
sa(x,ρ)dF(x), which
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is also finite by assumption. Then, there is a sufficiently high number awith

v(a)− β(a) < 0, so v′(a) < 0 for all a ≥ a.
Because v′ is continuous, there is a∗ ∈ [a,a] with v′(a∗) = 0, so the solution

exists. We now prove uniqueness. Let a′ satisfy v′(a′) = 0, and let a′ > a∗

without loss of generality. By the quasiconcavity argument above, v′(x) = 0

for all x ∈ [a∗, a′]. Then

0 = v(a′)− β(a′) < v(a′)− β(a∗) = v(a∗)− β(a∗) +
∫ a′

a∗
v′(x)dx = 0,

again, yielding a contradiction. Therefore a∗ is unique. This concludes Step

1.1. By symmetry, we have the definition of m.

Step 1.2. ApproximatingmN using a threshold. In this step we show how

to approximate mN using the expectation generated by a threshold strategy

as N grows large. For any realized sequence of observables, aN , let FN be

the associated empirical distribution of observables. We then define:

m̃N = max
a∈R

ρ
∫ a
−∞ sa(x,ρ)dFN (x) + ρ

∫∞
a

sa(x,ρ)dFN (x)

ρFN (a) + ρ (1−FN (a))

We call the objective function of the problem above Ψ N (a).

At the same time, using the proof of Lemma 3 without assuming the dis-

tribution of observables is non-atomic, we obtain that mN can be obtained

by an assignment that is a threshold except for possibly one of the observ-

ables receiving an intermediate precision. Thus, we can find mN through

the alternative optimization:

mN = max
a,ρ∈[ρ,ρ]

ρ
∫ a−
−∞ sa(x,ρ)dFN (x) + ρsa(a,ρ)(FN (a)−FN (a−)) + ρ

∫∞
a

sa(x,ρ)dFN (x) +
ρµ
N µ

ρFN (a−) + ρ(FN (a)−FN (a−)) + ρ (1−FN (a)) +
ρµ
N


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We call the objective function above Ψ̃ N (a,ρ). We next prove

sup
a∈R,ρ∈[ρ,ρ]

|Ψ̃ N (a,ρ)−Ψ N (a)| a.s−−→ 0.

To see this, notice that for almost any sequences of realized observables aN ,

it must be that supa
{
FN (a)−FN (a−)

}
≤ 1
N . This observation directly leads to

the uniform convergence result.

Denote

Ψ (a) =
ρ
∫ a
−∞ sa(x,ρ)dF(x) + ρ

∫∞
a

sa(x,ρ)dF(x)

ρF(a) + ρ (1−F(a))
.

where F is, again, the true distribution of observables.

Step 1.3. supa∈R |ΨN(a)−Ψ(a)| a.s.−−→ 0. Given the Glivenko–Cantelli theo-

rem, we know that the empirical distribution function converges to the true

cumulative distribution function uniformly over x, that is,

‖FN −F‖ := sup
x∈R
|FN (x)−F(x)| a.s.−−→ 0.

For each real-valued function v, denote

FN (v) =
∫
vdFN , F(v) =

∫
vdF.

A class of real-valued functions V is defined to be a P-Glivenko-Cantelli class
of functions if

‖FN −F‖V := sup
v∈V
|FN (v)−F(v)| a.s.−−→ 0.

Recall that the L1(F) norm is defined for real-valued functions such that

‖v‖L1(F) =
∫
|v|dF.

Given two real-valued functions l and u and ε > 0, a ε-bracket [l,u] is
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the set of all functions f such that l ≤ f ≤ u and ‖u − l‖L1(F) ≤ ε. The brack-
eting number N (ε,V ,‖ · ‖L1(F)) is the minimum number of ε-brackets needed

to cover V . The following theorem provides a sufficient condition for a P-

Glivenko-Cantelli class.

Theorem 4. ( (Blum, 1955; DeHardt, 1971)) If N (ε,V ,‖ · ‖L1(F)) < ∞ for any
ε > 0, then V is a P-Glivenko-Cantelli class.

Denote

V1 =
{
va1 : va1(x) = ρ1{x≤a} + ρ1{x>a},∀x ∈ R, for some a ∈ R

}
,

V2 =
{
va2 : va2(x) = ρx1{x≤a} + ρx1{x>a},∀x ∈ R, for some a ∈ R

}
.

It is easy to see that

Ψ N (a) =
FN (va2)
FN (va1)

and Ψ (a) =
F(va2)
F(va1)

.

We want to show that both V1 and V2 are P-Glivenko-Cantelli classes.

Note that F is a continuous distribution whose expectation is well-defined,

that is,
∫
|x|dF <∞.

Fix ε > 0. For any a > b, the L1(F)-distance between va1 and vb1 is

‖va1 − v
b
1‖L1(F) = (ρ − ρ)

∫ a

b
dF(x).

Since
∫∞
−∞dF(x) = 1, for M large enough, we can find a finite increasing

sequence {a1, ..., aM} on the extended real line such that a1 = −∞, aM = ∞
and ∫ ai+1

ai

dF(x) =
1

M − 1
≤ ε
ρ − ρ

,∀i = 1, ...,M − 1

This is feasible as F is a continuous distribution. Then it is easy to show

that the set of ε-brackets {[vai1 ,v
ai+1
1 ] : i = 1, ...,M −1} covers V1 and N (ε,V1,‖ ·

‖L1(F)) ≤M − 1 <∞. Hence V1 is a P-Glivenko-Cantelli class.
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Similarly, for any a > b, the L1(F)-distance between va2 and vb2 is

‖va2 − v
b
2‖L1(P ) = (ρ − ρ)

∫ a

b
|x|dF(x).

Since
∫
|x|dF < ∞ and F is continuous, for M ′ large enough, again we can

fine a finite increasing sequence {b1, ...,bM ′ } on extended real line such that

b1 = −∞, bM ′ =∞ and∫ bi+1

bi

|x|dF(x) =

∫
|x|dF
M ′ − 1

≤ ε
ρ − ρ

,∀i = 1, ...,M ′ − 1.

Then it is easy to show that the set of ε-brackets {[vbi2 ,v
bi+1
2 ] : i = 1, ...,M ′−

1} covers F2 and N (ε,V2,‖ · ‖L1(F)) ≤M ′ − 1 < ∞. Hence V2 is a P-Glivenko-

Cantelli class.

The definition of the P-Glivenko-Cantelli class implies that

‖FN −F‖V1
= sup
v∈V1

|FN (v)−F(v)| = sup
a∈R
|FN (va1)−F(va1)| a.s.−−→ 0. (2)

‖FN −F‖V1
= sup
v∈V1

|FN (v)−F(v)| = sup
a∈R
|FN (va1)−F(va1)| a.s.−−→ 0. (3)
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Now we can show the convergence of Ψ N :

sup
a∈R
|Ψ N (a)−Ψ (a)|

=sup
a∈R
|
FN (va2)
FN (va1)

−
F(va2)
F(va1)

|

≤sup
a∈R
|
FN (va2)
FN (va1)

−
FN (va2)
F(va1)

|+ sup
a∈R
|
FN (va2)
F(va1)

−
F(va2)
F(va1)

|

≤sup
a∈R
|

FN (va2)
F(va1)FN (va1)

||FN (va1)−F(va1)|+ sup
a∈R

1
|F(va1)|

|FN (va2)−F(va2)|

≤sup
a∈R
|

FN (va2)
F(va1)FN (va1)

|sup
a∈R
|FN (va1)−F(va1)|+ sup

a∈R

1
|F(va1)|

sup
a∈R
|FN (va2)−F(va2)|.

Notice that 0 < ρ ≤ F(va1) ≤ ρ <∞ and 0 < ρ ≤ FN (va1) ≤ ρ <∞ for each N .

That is, F(va1) and FN (va1) are uniformly bounded away from 0 and∞. Also,

by applying strong law of large numbers,

sup
a∈R
|FN (va2)| ≤ (ρ+ ρ)

∫
|x|dFN a.s.−−→ (ρ+ ρ)

∫
|x|dF < +∞.

By equations 2 and 3, we know

sup
a∈R
|Ψ N (a)−Ψ (a)| a.s.−−→ 0.

Step 1.4. mN
a.s.−−→ m. This result follows directly from the following

standard results about consistency of M–estimators. We include the proof

for completeness.

Lemma 4. Suppose that

1. supa∈R,ρ∈[ρ,ρ] |Ψ̃ N (a,ρ)−Ψ (a)| a.s.−−→ 0,

2. mN ∈ argmaxa∈R,ρ∈[ρ,ρ] Ψ̃
N (a,ρ) for each N ,

3. m = argmaxa∈RΨ (a) is the unique maximum of Ψ ,

Then mN
a.s.−−→m.
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Proof of Lemma 4. We ignore the argument ρ throughout the proof without

loss of generality. By conditions (2) and (3), we know Ψ̃ N (mN ) ≥ Ψ̃ N (m) and

Ψ (m) ≥ Ψ (mN ) for each N . Using these inequalities we have

Ψ̃ N (mN )−Ψ (mN ) ≥ Ψ̃ N (mN )−Ψ (m) ≥ Ψ̃ N (m)−Ψ (m)

Therefore from the above we have

|Ψ̃ N (mN )−Ψ (m)| ≤max
{
|Ψ̃ N (mN )−Ψ (mN )|, |Ψ̃ N (m)−Ψ (m)|

}
≤ sup
a∈R
|Ψ̃ N (a)−Ψ (a)|

Hence by condition (1), we know |Ψ̃ N (mN )−Ψ (m)| a.s.−−→ 0. Finally, consider

any ω in set M such that |Ψ̃ N (mN (ω))−Ψ (m(ω))| → 0. For that ω:

Ψ (mN )−Ψ (m) =
(
Ψ (m)− Ψ̃ N (mN )

)
+
(
Ψ̃ N (mN )−Ψ (mN )

)
.

Each term in parentheses in the right hand side converges to zero be-

cause of the definition of the set M and condition (1), respectively. Thus,

the left hand side must converge to zero. Since m is the unique minimizer

of Ψ , we get mN → 0 for any ω ∈ M. Because M set with probability one,

this convergence is almost sure.

Now it suffices to show that the conditions in Lemma 4 hold in our case.

Condition (1) is shown in Step 1.2 and 1.3. Explicitly, supa,ρ |Ψ̃ N (a,ρ) −
Ψ (a)| a.s−−→ 0 and supa |Ψ N (a) −Ψ (a)| a.s.−−→ 0 imply that condition. Condition

(2) holds by the definition ofmN . Condition (3) is shown in the proof of Step

1.1. This completes the proof for mN
a.s.−−→m. The same arguments apply for

showing mN
a.s.−−→m.

Step 2. Part 1 of Theorem: Boundedness of Posterior Means. For any N ,

with observables aN and conjectured precisions ρ̂N , recall we have:

θ|sN , ρ̂N ∼N
∑N

i=1 ρ̂is
a(ai , ρ̂i) + ρµµ∑N

i=1 ρ̂i + ρµ
,

1−
∑N
i=1 ρ̂i∑N

i=1 ρ̂i + ρµ

 1
ρµ

 . (4)
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Since ρ̂i ≥ ρ > 0, it is clear that limN→∞

∑N
i=1 ρ̂i∑N

i=1 ρ̂i+ρµ
= 1, so the variance

converges to zero for all sequences of signal realizations.

As for the posterior mean, notice that, by definition of mN , mN :

mN ≤
∑N
i=1 ρ̂is

a(ai , ρ̂i) + ρµµ∑N
i=1 ρ̂i + ρµ

≤mN .

By taking limit inferior in the first inequality above and limit superior

in the second, we obtain, using the result in Step 2, that for almost all se-

quences of signal realizations, the asymptotic bounds on expected values

hold.

Step 3. Part 2 of Theorem: Limit Set of Posteriors. Fix a sequence of

realizations a. We want to characterize the set of distributions the posterior

beliefs of the DM converge to, P∞(a). By (4), it is clear that a necessary

condition for weak convergence is that the posterior mean
∑N
i=1 ρ̂is

a(ai ,ρ̂i )+ρµµ∑N
i=1 ρ̂i+ρµ

converges. We can then focus on sequences with convergent means. Define

b = limN→∞

∑N
i=1 ρ̂is

a(ai ,ρ̂i )+ρµµ∑N
i=1 ρ̂i+ρµ

.

We can write the characteristic function of PN (sN , ρ̂N ) as:

ϕN (t) = e
it

{∑N
i=1 ρ̂is

a(ai ,ρ̂i )+ρµµ∑N
i=1 ρ̂i+ρµ

− 1
2

(
1−

∑N
i=1 ρ̂i∑N

i=1 ρ̂i+ρµ

)
1
ρµ

}

By Step 2, the variance converges to zero. We then have, for all t:

ϕN (t)→ eitb

which is the characteristic function of δb. Then, by Levy’s continuity theo-

rem: PN (sN , ρ̂N )
w−→ δb.

We finally show that any b ∈ [m,m] can be achieved. For that, fix a

threshold assignment ρ : R→ {ρ,ρ}. Then {ρ(ai)sa(ai ,ρ(ai))}i≥1 is a sequence

of independent signals with uniformly bounded variance. Then, by the
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strong law of large numbers:∑N
i=1ρ(si)sa(ai ,ρ(ai)) + ρµµ∑N

i=1ρ(si) + ρµ
=
N

∫
ρ(x)sa(x,ρ(x))dFN (x) + ρµµ

N
∫
ρ(x)dFN (x) + ρµ

a.s.−−→

∫
ρ(x)sa(x,ρ(x))dF(x)∫

ρ(x)dF(x)
.

We finish this step by showing that by appropriately choosing the as-

signment ρ, the function
∫
ρ(x)sa(x,ρ(x))dF(x)∫

ρ(x)dF(x)
can achieve any point between m

andm. To see that, recall thatm = maxaΨ (a). We can show that minaΨ (a) =

min{
∫
sa(x,ρ)dF(x),

∫
sa(x,ρ)dF(x)}. Since Ψ is continuous, by choosing dif-

ferent a’s, any number in [minaΨ (a),m] can be achieved. Similarly, for

the function that defines m, we can show that it can achieve any value

in [m,max{
∫
sa(x,ρ)dF(x),

∫
sa(x,ρ)dF(x)}]. Therefore, any value between

[m,m] can be achieved by
∫
ρ(x)sa(x,ρ(x))dF(x)∫

ρ(x)dF(x)
. This completes the proof.

Proof of Theorem 3

We start by proving that the optimal estimate is deterministic. For any fixed

N , and observable realization aN , recall that the DM’s problem is to choose

a distribution Γ ∗(aN ) to solve:

min
Γ ∈∆(R)

max
p∈Pa(aN )

Ep
[∫

g
u(g −θ)dΓ

]
.

Fix any non-degenerate distribution of estimates, Γ , and let g̃ =
∫
gdΓ be

its expected value. Note that, for any p ∈ Pa(aN ):∫
u(g̃ −θ)dp <

∫ ∫
u(g −θ)dΓ dp,

by Jensen’s inequality and strict convexity of u. By taking supremum with

respect to the compact set Pa(aN ) and noticing that the objective function
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on the left-hand-side is continuous, we obtain:

max
p∈Pa(aN )

∫
u(g̃ −θ)dp < sup

p∈Pa(aN )

∫ ∫
u(g −θ)dΓ dp.

Therefore, any distribution over estimates is strictly outperformed by its

expected value, and the optimal estimate is deterministic. Henceforth, we

take as given that the optimal estimate is deterministic to prove the rest of

the result.

Define

χN (g) ≡ max
p∈Pa(aN )

Ep [u(g −θ)] .

By definition, assuming that the limits exist, we have:

lim
N→∞

g∗(sN ) = lim
N→∞

argmin
g
χN (g).

Also denote

χ(g) = max{u(g −m),u(g −m)}

where m and m are defined in Theorem 2.

We start with introducing an auxiliary problem with finitely many sig-

nals by ignoring the effect of any moment of the posterior distribution that

is not the mean. Explicitly:

χ̃N (g) ≡ max
p∈Pa(aN )

u(g −Ep[θ]) = max
{
u(g −mN ),u(g −mN )

}
where mN and mN are defined in the proof of Theorem 2 and the equality

follows from the fact that u is convex.

Lemma 5. Let f N be a sequence of real-valued random mappings such that
xN ∈ argminx∈R f N (x), for allN ∈ N. Assume there is another random mapping
f and that the following are satisfied:

1. supx∈C |f (x)− f N (x)| a.s−−→ 0, as N →∞, for all compact sets C ⊂ R.
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2. x∗ ∈ argminx∈R f (x) is the unique minimum of f .

3. The sequence xN is bounded almost everywhere.

Then xN
a.s−−→ x∗.

Proof of Lemma 5. By condition (3), there exists an event M with P(M) = 1

such that for all ω ∈M, there is a compact set C(ω) ⊆ R with {xN (ω)}N≥1 ∪
{x∗(ω)} ⊆ C(ω). By condition (1), we can find M ′ ⊆M with P(M ′) = 1 such

that for all ω ∈ M ′, supx∈C(ω) |f (x) − f N (x)| → 0. Easy to see that x∗ is the

unique minimum of f on C(ω) and xN is a minimum of f N on C(ω). Fol-

lowing the same proof of Lemma 4, we know for all ω ∈M ′, xN (ω)→ x∗(ω),

which implies xN
a.s−−→ x∗.

In the remainder of this proof, we aim to show that χN , χ, gN ≡ g∗(sN )

and g∗ solving u(g∗ −m) = u(g∗ −m) satisfy the conditions of Lemma 5. We

do so in three steps, one for each condition in the lemma. This allows us to

obtain that g∗(sN )
a.s−−→ g∗.

Step 1. supg∈C |χ(g)−χN(g)| a.s.−−→ 0, as n→∞, for all compact sets C ⊂ R.

Step 1.1. supg∈C |χN(g)− χ̃N(g)| a.s.−−→ 0, as n→∞, for all compact sets C ⊂
R.

We first consider the auxiliary function χ̃N . As N grows to infinity, the

gap between χN and χ̃N shrinks uniformly. To prove this claim, note that

for any aN and p ∈ Pa(aN ):

χN (g) ≥ Ep [u(g −θ)] ≥ u
(
g −Ep[θ]

)
,

where we use convexity of u for the second inequality. Then, by taking max

over p ∈ Pa(aN ) we obtain χ̃N (g) ≤ χN (g).

Now, for each g, θ̃, and p ∈ Pa(aN ), convexity of u implies:

u(g−θ̃) ≤ u(g−Ep[θ])+u′(g−θ̃)(Ep[θ]−θ̃) ≤ u(g−Ep[θ])+
∣∣∣u′(g − θ̃)

∣∣∣ ∣∣∣Ep[θ]− θ̃
∣∣∣ .
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Because u′′ is bounded, and u is smooth and minimized at zero by as-

sumption, we have, for some L > 0,

|u′(g − θ̃)| ≤ L|g − θ̃|.

Then, by taking expectations on the previous expression and applying

this bound, we have

Ep
[
u(g − θ̃)

]
≤ Ep

[
u(g −Ep[θ])

]
+L Ep

[∣∣∣g − θ̃∣∣∣ ∣∣∣Ep[θ]− θ̃
∣∣∣]

≤ Ep
[
u(g −Ep[θ])

]
+L

√
Ep

[(
g − θ̃

)2
]√

Ep
[(
Ep[θ]− θ̃

)2
]
,

where the last inequality follows from the Cauchy-Schwarz inequality. Fix

an arbitrary compact set C ⊂ R and define v = maxg∈C,p∈Pa(aN )

√
Ep

[
(g − θ̃)2

]
— which is finite by normality and uniformly bounded variance of the

distributions in Pa(aN ). We can then maximize the expression above over

p ∈ Pa(aN ) and use subadditivity of the max operator to obtain that for any

g ∈ C,

χN (g) ≤ χ̃N (g) +Lv max
p∈Pa(aN )

√
Var(p),

and therefore:

0 ≤ χN (g)− χ̃N (g) ≤ Lv max
p∈Pa(aN )

√
Var(p).

Notice that neither bound depends on g within this compact setC. More-

over, the upper bound converges to zero, as we have proved that all vari-

ances converge to zero and are uniformly bounded above by the variance of

assigning ρ for all signals. Thus:

sup
g∈C
|χN (g)− χ̃N (g)| a.s.−−→ 0.

Step 1.2. supg∈C |χ(g)− χ̃N(g)| a.s.−−→ 0, as n→∞, for all compact setsC ⊂ R.
Recall that we can write χ̃N (g) = max{u(g −mN ),u(g −mN )}. Also by
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Theorem 2, mN
a.s.−−→m and mN

a.s.−−→m.

We use the following lemma:

Lemma 6. Let f N , gN , f ,g forN ∈ N be functions fromD ⊂ R into the reals, and
let hN = max{f N , gN } and h = max{f ,g}. If supx |f N − f | → 0 and supx |gN −
g | → 0 then, supx |hN − h| → 0.

Proof. For any fixed ε there exist Nf and Ng such that, for all x ∈D:

|f N (x)− f (x)| < ε if N ≥Nf ,

|gN (x)− g(x)| < ε if N ≥Ng .

Take N ≥ Ñ = max{Nf ,Ng}. We then have:

h(x) ≤ (f N (x) + ε)1f (x)≥g(x) + (gN (x) + ε)1g(x)≥f (x) ≤ hN (x) + ε.

where the second inequality comes from the definition of hN . By the same

logic, inverting the roles of h and hN :

hN (x) ≤ (f (x) + ε)1f N (x)≥gN (x) + (g(x) + ε)1gN (x)≥f N (x) ≤ h(x) + ε.

By joining the two inequalities above: |h(x) − hN (x)| ≤ ε for all N ≥ Ñ .

Because x is arbitrary, we have our result.

In order to apply the result above, notice that supg∈C |u(g − x)− u(g − y)|
is a continuous function of x and, thus, converges to 0 as x → y. Thus,

supg∈C |u(g −mN ) − u(g −m)| a.s.−−→ 0 and similarly supg∈C |u(g −mN ) − u(g −
m)| a.s.−−→ 0. Therefore, applying the above lemma by defining f N (x) = u(x −
mN ) and gN (x) = u(x −mN ) gives us our result.

Step 1.3. supg∈C |χ(g)−χN(g)| a.s.−−→ 0, as n→∞, for all compact setsC ⊂ R.
This is directly implied by the previous two steps.
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Step 2. g∗ such that u(g∗ −m) = u(g∗ −m) is the unique minimum of χ.

Recall that χ(g) = max{u(g −m),u(g −m)}. First, notice that g∗ that min-

imizes χ must be in [m,m]. Assume, for a contradiction, that minχ(g) =

u(g∗ −m) > u(g∗ −m). By continuity of u, we can choose m < g ′ < g∗ such

that u(g ′ −m) > u(g ′ −m), that is, χ(g ′) = u(g ′ −m). Because u is strictly

convex and minimized at 0, it must be that u(g∗ −m) > u(g ′ −m). But then,

χ(g ′) < χ(g∗), which is a contradiction. A similar contradiction is found if we

assume minχ(g) = u(g∗ −m) < u(g∗ −m). Thus, the equality must hold. The

uniqueness of g∗ is guaranteed by u being strictly convex and minimized at

0.

Step 3. The sequence gN is bounded almost everywhere. For a sequence

of realized observables aN , recall that mN = minp∈Pa(aN )E[θ] and, symmet-

rically, mN = maxp∈Pa(aN )E[θ]. Assume, for a contradiction, that there is an

event M with positive probability, such that gN is unbounded. If that’s the

case, up to a subsequence, we have: gN > N . Then, by strict convexity of u

we have:

χ(gN ) = max
p∈Pa(aN )

Ep[u(gN −θ)] ≥ max
p∈Pa(aN )

u(gN −Ep[θ]) ≥ u(gN −mN ).

Now, because mN
a.s.−−→m, we can choose an event M ′ ⊂M, with the same

probability ofM, in whichmN →m. That implies, with the unboundedness

of gN and strict convexity of u, that the lower bound above diverges, so

χ(gN ) is unbounded. To show that gN cannot be optimal, it suffices to show

that there is a sequence xN such that χ(xN ) is bounded in this event. For

any real number a, take the sequence xN = a for all N . Because χN
a.s.−−→ χ

uniformly in any compact set, we have that, for a further event M ′′ ⊂ M ′,
with the same probability of M ′, that for any ε, for sufficiently large N ,

χN (a) < χ(a) + ε.

Thus, χN (a) is a bounded sequence, proving that, for sufficiently large
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N :

χN (a) < χN (gN ),

which is the contradiction that we were seeking.

Proof of Corollary 1

Symmetry implies Consistency. Define

ζ(m) =
ρ
∫ m
−∞xdF(x) + ρ

∫∞
m
xdF(x)

ρF(m) + ρ (1−F(m))
, ζ(m) =

ρ
∫ m
−∞xdF(x) + ρ

∫∞
m
xdF(x)

ρF(m) + ρ (1−F(m))

Clearly, ζ(m) = m and ζ(m) = m. Because F is symmetric around θ, for

m ∈ R:

ζ(2θ −m) =
ρ
∫ 2θ−m
−∞ xdF(x) + ρ

∫∞
2θ−mxdF(x)

ρF(2θ −m) + ρ (1−F(2θ −m))

= 2θ −
ρ
∫ m
−∞xdF(x) + ρ

∫∞
m
xdF(x)

ρF(m) + ρ (1−F(m))
= 2θ − ζ(m).

Then, 2θ −m = 2θ − ζ(m) = ζ(2θ −m). But because m is the unique fixed

point of ζ:16 m = 2θ −m, and we are done.

Asymmetry implies non-consistency for some sets. Let x∗ be such that

u(x∗) , u(−x∗). Define η = ρ
ρ . Notice, from the proof of Proposition 2 that,

that m−m
2 is an function of η onto the real line. Then, choose η∗ such that

m−m
2 = x∗. Finally, recall that, by observable signals, θ = m+m

2 . Then:

u(θ −m) = u(x∗) , u(−x∗) = u(θ −m)

Thus, by Theorem 3, g∗ , θ.

16See the Proof of Theorem 2.
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Proof of Proposition 2

m(m) monotonically increases(decreases) in η We go through the proof

for m, a symmetric argument holds for m. Define kη(a) as

kη(a) ≡ E[θ](a) =
ρ
∫ a
−∞xf (x)dx+ ρ

∫∞
a
xf (x)dx

ρF(a) + ρ (1−F(a))
=

∫ a
−∞xf (x)dx+ η

∫∞
a
xf (x)dx

F(a) + η (1−F(a))

For convenience we can rewrite kη(a) as

kη(a) =
F(a)E[x|x < a] + η(1−F(a))E[x|x ≥ a]

F(a) + η(1−F(a))

We know that

m = argmax
a∈R

kη(a) and m = max
a∈R

kη(a)

Then, via the envelope theorem we have

dm
dη

=
dkη(m)

dη
=

F(m)(1−F(m))

(F(m) + η(1−F(m)))2 (E[x|x ≥m]−E[x|x < m]) > 0

Step 1. As η→ +∞(−∞), m→∞(m→−∞). First note that

lim
η→∞

kη(a) = E[x|x ≥ a] > a.

The above inequality follows from the full support of the distribution. For

any z ∈ R we want to show that ∃ η̃ such that kη̃(m) ≥ z. From the above

limit, we know that ∃η̃ such that kη̃(z) > z. Because m = argmaxa∈R kη(a) we

know that kη̃(m) ≥ kη̃(z) > z.

Step 2. As η → 1, m −m→ 0. When η → 1, kη(a) reduces to the uncon-

ditional expected value for any a. Similarly, the optimization problem that

determines m reduces to the unconditional expected value, completely un-

affected by a. Thus, as η → 1 both m and m converge to the unconditional
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expectation.

Proof of Proposition 3

LetH �FOSD G be precisions distributions, and let the true value of the state

be θ. Assume these distributions of precision generate signal distributions

FH and FG respectively. We first prove FH is a mean-preserving spread of

FG — denoted FG �MPS FH .

Signals are more disperse under H . Indeed, notice that:

FH (x) =
∫
ρ
Fρ(x)dH(ρ) FG(x) =

∫
ρ
Fρ(x)dG(ρ),

where Fρ is the CDF of the normal distribution with mean θ and precision

ρ. Now, because all Fρ’s have the same mean, and a higher precision means

lower dispersion of signals, we have Fρ �m.p.s. Fρ′ , for ρ < ρ′. Therefore, for

any z,
∫ z
−∞Fρ(x)dx is decreasing in ρ. Thus:

∫ z

−∞
FH (x)dx =

∫
ρ

∫ z

−∞
Fρ(x)dxdH(ρ) ≥

∫
ρ

∫ z

−∞
Fρ(x)dxdG(ρ) =

∫ z

−∞
FG(x)dx,

where the change in the integration order is a consequence of Tonelli’s the-

orem, and the inequality is justified because
∫ z
−∞Fρ(x)dx is decreasing in ρ,

and G first-order stochastically dominates H . This inequality implies FH
second-order stochastically dominates FG. But it is clear FH and FG have

the same mean, θ. So we proved FH is a mean-preserving spread of FG. We

now use this result to conclude the proof.

Asymptotic belief set is larger under H . We prove the result for the up-

per bound. The result holds for the lower bound by symmetry. For a signal
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distribution P , define:

kP (a) =

∫ a
−∞xdP (x)dx+ η

∫∞
a
xdP (x)dx

P (a) + η (1− P (a))
=
P (a)EP [x|x ≤ a] + η (1− P (a))EP [x|x ≥ a]

P (a) + η (1− P (a))
.

We know:

mG = max
a
kFG(a) and mH = max

a
kFH (a).

First, we implement a change of variables. For each a, there exists a

quantile q ∈ [0,1] such that P (a) = q. We can then write:

kP (a) = k̂P (q) ≡
qEP [x|P (x) ≤ q] + η(1− q)EP [x|P (x) ≥ q]

q+ η(1− q)

Because FH is a mean-preserving spread of FG,

EFH [x|FH (x) ≥ q] ≥ EFG[x|FG(x) ≥ q] and EFG[x|FG(x) ≤ q] ≥ EFH [x|FH (x) ≤ q].

Moreover, because FG and FH have the same mean:

EFH [x] = qEFH [x|FH (x) ≤ q] + (1− q)EFH [x|FH (x) ≥ q]

=EFG[x] = qEFG[x|FG(x) ≤ q] + (1− q)EFG[x|FG(x) ≥ q].

Because η > 1, the expressions above above imply k̂FG(q) ≤ k̂FH (q). To

conclude the argument, we note:

mG = max
a
kFG(a) = max

q∈[0,1]
k̂FG(q) ≤ max

q∈[0,1]
k̂FH (q) = max

a
kFH (a) =mH .
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Proof of Proposition 4

By setting sa (ai , ρ̂i) = ai +
ρµ
ρ̂i

(ai −µ) and β(a) = a in Theorem 3, the bounds of

the limiting posterior set are given by

ma =
ρ
∫ ma
−∞xdF(x) + ρ

∫∞
ma
xdF(x) + c

ρF(ma) + ρ (1−F(ma))
, ma =

ρ
∫ ma
−∞xdF(x) + ρ

∫∞
ma
xdF(x) + c

ρF(ma) + ρ (1−F(ma))

(5)

where c =
ρρµ
ρµ+ρ (θ −µ).

The optimal estimate is ma = ma+ma
2 . When θ = µ, c = 0 and by Corollary

1 ma = θ = µ and the observer’s estimate is consistent. From now on, we

first focus on the case where θ > µ.

Denote G(z) = ρF(z) + ρ (1−F(z)) and G(z) = ρF(z) + ρ (1−F(z)). Rear-

ranging the first equation and using integration by parts, we get

maG(ma) = ρ
(
xF(x)

∣∣∣ma−∞ −∫ ma

−∞
F(x)dx

)
+ ρ

(
−x (1−F(x))

∣∣∣∞
ma

+
∫ ∞
ma

(1−F(x))dx
)

+ c

= ρ
(
maF(ma)−

∫ ma

−∞
F(x)dx

)
+ ρ

(
ma (1−F(ma)) +

∫ ∞
ma

(1−F(x))dx
)

+ c

=maG(ma)−
(
ρ

∫ ma

−∞
F(x)dx − ρ

∫ ∞
ma

(1−F(x))dx
)

+ c.

This implies

ρ

∫ ma

−∞
F(x)dx − ρ

∫ ∞
ma

(1−F(x))dx = c. (6)

A symmetric argument for ma shows that

ρ

∫ ma

−∞
F(x)dx − ρ

∫ ∞
ma

(1−F(x))dx = c. (7)

Taking the derivative with respect to the state θ on both sides of equa-
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tion 6 and equation 7, we get

dma
d θ

=
ρ

ρµ + ρ
+

ρµ
ρµ + ρ

ρ

G(ma)
and

dma
d θ

=
ρ

ρµ + ρ
+

ρµ
ρµ + ρ

ρ

G(ma)
.

The derivative of the optimal guess ma = ma+ma
2 with respect to θ is then:

dma
dθ

=
ρ

ρµ + ρ
+

ρµ
ρµ + ρ

ρ

2

(
1

G(ma)
+

1
G(ma)

)
. (8)

Recall that H is normally distributed and denote its density function as

h. Then, we can use the derivative of the optimal bounds obtained above to

calculate:

dF(ma)
dθ

=
∂F(ma)
∂ma

dma
dθ

+
∂F(ma)
∂θ

= −
ρµ

ρµ + ρ
ρ

G(ma)
f (ma),

dF(ma)
dθ

=
∂F(ma)
∂ma

dma
dθ

+
∂F(ma)
∂θ

= −
ρµ

ρµ + ρ
ρ

G(ma)
f (ma).

It then follows that

d2ma
dθ2 =

ρ − ρ
2

(
ρρµ
ρµ + ρ

)2
 f (ma)

G
3
(ma)

−
f (ma)

G3(ma)


=
ρ − ρ

2

(
ρρµ
ρµ + ρ

)2
( f (ma)

G(ma)
−
f (ma)
G(ma)

)
1

G2(ma)
+
f (ma)

G(ma)

 1

G
2
(ma)

− 1

G2(ma)


 .

Lemma 7.
(

1
G

2
(ma)
− 1
G2(ma)

)
> 0 whenever θ > µ.

Proof. The statement is equivalent to G(ma) > G(ma), which is also equiva-

lent to F(ma) + F(ma) > 1. Since H is symmetric around
ρθ+ρµµ
ρ+ρµ

, the latter is
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true if and only if ma >
ρθ+ρµµ
ρ+ρµ

. We show that this is the case. Define

ζ(z,u) =
ρ
∫ z
−∞xdF(x) + ρ

∫∞
z
xdF(x) +u

ρF(z) + ρ (1−F(z))
,

ζ(z,u) =
ρ
∫ z
−∞xdF(x) + ρ

∫∞
z
xdF(x) +u

ρF(z) + ρ (1−F(z))

We know ma = ζ(ma, c), and it was previously proved that ma maximizes

ζ(ma, c). By the envelope theorem we have:

dζ(ma, c)
du

=
∂ζ(ma, c)
∂u

=
1

ρF(ma) + ρ (1−F(ma))
> 0

A similar argument implies that
ζ(ma,u)
du > 0, for all u ∈ R. Finally, by an

equivalent argument to the proof of Corollary 1, we have
ζ(ma,0)+ζ(ma,0)

2 =∫
xdH =

ρθ+ρµµ
ρ+ρmu

. Then, if θ > µ - which implies c > 0:

ma =
ma +ma

2
=
ζ(ma, c) + ζ(ma, c)

2
>
ζ(ma,0) + ζ(ma,0)

2
.

This concludes the proof of the lemma.

Therefore, (
f (ma)

G(ma)
−
f (ma)
G(ma)

)
≥ 0 =⇒ d2ma

dθ2 > 0. (9)

We next consider the partial derivative of the optimal guess with respect

to ρ. We start with an alternative implicit function of ma and ma. Notice

that if f as the density function of a normal distribution with mean µ̃ and

variance σ̃2, then ∂f (x)
∂x = −x−µ̃

σ̃2 f (x). This implies xf (x) = µ̃f (x) − σ̃2 ∂f (x)
∂x .
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Plugging this into the initial implicit functions 5, we get

ma =
ρµµ+ ρθ

ρµ + ρ
+

c

G(ma)
+ (ρ − ρ)

ρ

(ρµ + ρ)2
f (ma)

G(ma)
,

ma =
ρµµ+ ρθ

ρµ + ρ
+

c
G(ma)

− (ρ − ρ)
ρ

(ρµ + ρ)2

f (ma)
G(ma)

.

By definition of ma, we have

ma = θ + (θ −µ)
(
dma
dθ
− 1

)
+

(ρ − ρ)ρ

2(ρµ + ρ)2

(
f (ma)

G(ma)
−
f (ma)
G(ma)

)
. (10)

Based on the implicit function theorem, we can calculate the following

derivative:

dma
dρ

=
ρµ(ma −µ) + ρ(θ −ma)

2ρ2 + 2ρµρ
+
c
2

ρµ + (ρµ + ρ)ρ

(ρµ + ρ)ρ

(
1

G(ma)
+

1
G(ma)

)
.

As θ > µ, it is easy to show that ma > µ and c > 0. This leads to the

following result.

θ > µ and ma ≤ θ =⇒ dma
dρ

> 0. (11)

Note that the last term of dma
dρ can be rewritten as

(
dma
dθ −

ρ
ρµ+ρ

)
ρµ+ρ
ρµ

2
ρ . Let

κ1 = 1
2ρ2+2ρµρ

and κ2 =
ρµ+(ρµ+ρ)ρ

ρµρ2 , then:

d2ma
dρdθ

= ρµκ1
dma
dθ
− ρκ1

(
dma
dθ
− 1

)
+
ρρµ
ρµ + ρ

κ2

(
dma
dθ
−

ρ

ρµ + ρ

)
+ cκ2

d2ma
dθ2 .

(12)

We know that dmadθ > ρ
ρµ+ρ > 0 and when θ = µ, d

2ma
dθ2 = 0. This leads to the
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following result:

θ = µ and
dma
dθ
≤ 1 =⇒ d2ma

dρdθ
> 0. (13)

To make it clear that the optimal guess depends on θ and ρ, we some-

times denote ma, ma and ma as ma(ρ,θ), ma(ρ,θ) and ma(ρ,θ). Notice that ρ̃

is determined by forcing dma
dθ to approach 1 when θ goes to infinity, while

at ˜̃ρ we have dma
dθ ( ˜̃ρ,µ) = 1.

The rest of the proof will be divided by the following lemmas. We will

fix µ and consider the case with θ ≥ µ.

Lemma 8. For any given ρ, if ma(ρ, θ̂) > θ̂ and dma
dθ (ρ, θ̂) > 1, then ma(ρ,θ) > θ

for all θ > θ̂.

Proof. Fix ρ. Assume that there exists θ̂, ma(ρ, θ̂) > θ̂ and dma
dθ (ρ, θ̂) > 1.

Suppose by contradiction that there exists some θ > θ̂ such that ma(ρ,θ) =

θ. By continuity of dmadθ , there exists θ′ < θ′′ ∈ (θ̂,θ] where dma
dθ (ρ,θ′) = 1 and

dma
dθ (ρ,θ′′) < 1. By continuity of ma, ma(ρ,θ′) > θ′.

At θ′, equation (10) implies
(
f (ma)
G(ma)

− f (ma)
G(ma)

)
> 0, which guarantees d

2ma
dθ2 (ρ,θ′) >

0. This implies that for a neighborhood to the right of θ′, dmadθ > 1. Notice

that this holds for any θ ∈ [θ̂,θ] with dma
dθ (ρ,θ) = 1. Thus dma

dθ (ρ,θ) ≥ 1 for all

θ ∈ [θ̂,θ], which contradicts the assumption that ma(ρ,θ) = θ. As a result,

we know ma(ρ,θ) > θ for θ > θ̂. This concludes the proof of the lemma.

Lemma 9. For any given ρ, if there exists θ∗ > µ such that ma(ρ,θ∗) = θ∗ and
ma(ρ,θ) < θ for all µ < θ < θ∗, then ma(ρ,θ) > θ for θ > θ∗.

Proof. Suppose there exists θ∗ > µ such that ma(ρ,θ∗) = θ∗ and ma(ρ,θ) < θ

for µ < θ < θ∗. This implies dma
dθ (ρ,θ∗) ≥ 1. Again by equation (10), we know(

f (ma)
G(m)

− f (ma)
G(ma)

)
> 0, which leads to d2ma

dθ2 (ρ,θ∗) > 0 by (9). Then for any θ in

a small neighborhood to the right of θ∗, dmadθ (ρ,θ) > 1 and ma(ρ,θ) > θ. By

Lemma 8. This concludes the proof of the lemma and the proposition.
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