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Abstract

Many committees—juries, political task forces, etc.—spend time gathering costly information

before reaching a decision. We report results from lab experiments focused on such information-

collection processes. We consider decisions governed by individuals and groups and compare

how voting rules affect outcomes. We also contrast static information collection, as in classical

hypothesis testing, with dynamic collection, as in sequential hypothesis testing. Generally, out-

comes approximate the theoretical benchmark and sequential information collection is welfare

enhancing relative to static collection. Nonetheless, several important departures emerge. Static

information collection is excessive, and sequential information collection is non-stationary, pro-

ducing declining decision accuracies over time. Furthermore, groups using majority rule yield

especially hasty and inaccurate decisions.
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1 Introduction

1.1 Overview

Juries, boards of directors, congressional and university committees, government agencies such as

the FDA or the EPA, and many other committees spend time deliberating issues before reaching

a decision or issuing a recommendation. An important component of such collective decisions is

the acquisition of information. The statistics literature has offered two leading models of costly

information collection. Perhaps the most well known and heavily utilized is classical hypothesis

testing, where the amount of information to be collected, often the size of a data set, is chosen at

the outset. Classical hypothesis testing has many practical advantages. Most notably, it requires

only one choice pertaining to the information volume, or sample size, to be collected. Sequential

hypothesis testing, going back to Wald (1947), calls for incremental choices of information collection.

The researcher sees one piece of information, then decides whether to proceed with another, and

so on. Sequential hypothesis testing has efficiency advantages: information collection occurs only

when its marginal benefits justify its cost. However, it is arguably more complex, requiring repeat

decisions and information monitoring over time.

In this paper we provide an experimental examination of how individuals and groups collect

information. We examine both static and sequential information collection by both individuals and

groups following a variety of decision-making protocols.

The main results of our investigation are the following. First, although average participants’

behavior is arguably close to the theoretical predictions, we see several consistent deviations. In

particular, we observe excessive information collection when information collection is static, as in the

classical hypothesis testing model. We also see agents’ becoming less demanding of accuracy over

time when information collection is sequential. Second, individuals and groups behave markedly

differently. Furthermore, the collective rules by which groups make decisions have substantial

impact on outcomes. Specifically, groups making decisions under majority rule make far hastier

decisions, utilizing substantially less information, than either individuals, or groups that decide

under unanimity rule. Ultimately, we see similar decision accuracies under static or sequential

protocols. Nonetheless, when accounting for information costs, sequential protocols yield greater

efficiency levels.
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The investigation of information collection, and deliberative processes more generally, is partic-

ularly challenging using field data. It is often difficult to assess the precision of samples collected

and the underlying preferences of decision makers. Natural procedures, such as those pertaining

to juries, boards of directors, or the FDA, often have rigid protocols and are therefore difficult to

compare in a controlled fashion. Lab experiments are therefore particularly useful in these settings.

At the core of our experimental design is the following decision problem. There are two ex-ante

equally likely states, A or B—a metaphor for a guilty or innocent defendant, an investment that is

worthwhile or not, etc. Ultimately, each participant needs to guess the state of the world and gets

rewarded when correct. Each state is associated with a Brownian motion. The drift is � when the

state is A and �� when the state is B. The Brownian motion’s variance is state independent. As

time goes by, the realized sample path of the Brownian motion becomes increasingly informative

about the underlying state. There is a flow cost of information collection, the cost of observing

the realized Brownian path. Whenever information collection terminates, participants know the

posterior probability that the state is A and submit their guess. Naturally, the optimal guess corre-

sponds to the more likely state. Our focus is on the non-trivial trade-off pertaining to information

collection: waiting longer before making a decision increases accuracy, but comes at a cost.

We consider both static and dynamic information-collection procedures. The static setting

emulates the classic hypothesis testing scenario. Participants determine, at the outset, the time

horizon during which they collect information—namely, observe the Brownian path. They then

indeed see the path unravel for the specified amount of time, get informed of the ultimate posterior

over states, and make their guess. In the dynamic setting, emulating the sequential sampling

scenario, participants track the evolution of the Brownian path and can stop at any time to submit

their guess.

As our introductory examples suggest, there are many applications in which information collec-

tion is undertaken by a committee. This motivates our choice of treatments. In some treatments,

decisions are made by individuals, as in the classic paradigms. In others, they are made in groups.

When in a group, we consider two commonly-used institutions: majority and unanimity. In the

static setting, group members all submit their desired information-collection horizon at the outset.

Under majority rule, the median time is implemented for the group, whereas under unanimity, the

maximal time is implemented. In the dynamic setting, group members decide at each point in
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time whether to stop or continue searching. Under majority, whenever two members wish to stop

and agree on a guess, information collection terminates for the group, and the majority guess is

submitted. Analogously, under unanimity, whenever all members wish to stop and agree on the

guess, information collection terminates and that guess is implemented. In particular, in all our

group treatments, all group members receive the same payoff, derived from the jointly-determined

information cost, and the guess’ accuracy.

Our individual treatments offer a natural benchmark for the basic predictions emerging from

the canonical statistical information-collection procedures. In the static setting, our parameters are

such that the optimal information-collection horizon is 30 seconds. In our experiments, individuals

choose 42 seconds, a choice that is 40% higher than is optimal. In the dynamic setting, it is optimal

to use a constant threshold on posterior beliefs, set at 0:81 for our parameters. Intuitively, whenever

one becomes sufficiently confident in the assessment of which state had been realized, the cost of

further information collection outweighs its benefits. In our experimental treatments, individuals’

mean posteriors at decision time is remarkably similar to that predicted by theory, standing at

0:77. Nonetheless, individuals do not seem to use constant thresholds. We see decreasing threshold

over time, with participants becoming more lenient as time passes.

By design, our groups are homogeneous. Theoretically, there is a unique efficient equilibrium

mimicking the optimal individual choices. Therefore, our group treatments allow for the investiga-

tion of pure group effects. We find that groups behave differently from individuals, and that this

behavior depends on the voting rule governing group decisions.

Majority and unanimity generate different behaviors and outcomes in our setting. Groups

governed by majority decide much faster than individuals, and therefore under-collect information

to an even greater extent. Groups governed by unanimity decide more slowly than individuals, and

come extremely close to the theoretical benchmark in terms of decision accuracy.

Individuals choosing on their own exhibit heterogeneity in behavior. Could the mere grouping

of heterogeneous individuals explain the patterns observed in our group treatments? In order to an-

swer this question, we simulate groups composed of participants from our individual treatments and

record how such artificial groups would have decided under majority and under unanimity, absent

any changes in behavior. Differences between these simulated groups’ outcomes and individuals’

capture a mechanical effect of aggregating heterogeneous individuals.
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We �nd that di�erences between outcomes of groups using unanimity and individual outcomes

can be fully explained through the mechanical e�ect of aggregation.1 In contrast, majority decides

substantially faster than simulated groups of heterogeneous individuals. This presents a puzzle: why

are groups deciding using majority rule so hasty, while groups deciding using unanimity are not?

We suggest that majority creates ademand for agencythat leads agents to vote early. Remarkably,

we �nd that the decision accuracy under majority replicates the decision accuracy of the most

lenient members in our simulated groups. This feature suggests an additional force impacting the

�rst voter under majority. That �rst voter can accelerate her vote in order to strategically in
uence

the timing of the second, pivotal vote.

We then turn to a comparison between static and sequential information collection. We �nd

that, consistent with theoretical predictions, sequential information collection outperforms static

information collection. However, often decision bodies' decisions a�ect a large segment of the

population. The decision's accuracy is then of much greater import than then cost experienced by

a small fraction of society. When considering decision accuracies, sequential information collection

no longer dominates static information collection. In fact, under majority rule, static information

collection leads to superior accuracy relative to sequential information collection.

1.2 Related Literature

The problem of testing statistical hypotheses is an old one. Its origin can be traced back to Thomas

Bayes, who provided the well-known formulation of posterior probabilities of event \causes" in the

18'th century. Classical hypothesis testing has been used, formally or informally, for centuries, see

Stephan (1948). It came of age with the development of statistical hypotheses tests by Neyman and

Pearson (1933), who showed that the likelihood ratio test is the most powerful test for assessing

hypotheses with a given data set. Examples abound for its uses. It is still arguably the most heavily

applied approach for deducing inferences from limited observation sets. See, for example, Greene

(2018).

Sequential sampling, proposed by Wald (1945, 1947), introduced the idea of collecting data

dynamically. With each piece of data, a likelihood ratio test is performed to determine whether more

1The e�ect is nonetheless real: every individual in a group within our unanimity treatment is a�ected by the
group member with the most stringent threshold.
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observations are needed to accomplish a desired level of statistical con�dence. When data come at

a cost, Wald's method o�ers e�ciency gains over its static counterpart|when data is collected in

increments, a researcher can condition additional data collection on what had already been observed.

Sequential sampling has been used widely to describe how individuals collect information, more on

that below, and to guide researchers in the creation of databases, see Dominitz and Manski (2017)

and references therein.

Recent theoretical work has investigated how groups approach the deliberative process, linking

information acquisition with ultimate decisions. Persico (2004), Martinelli (2006), and Gerardi

and Yariv (2007, 2008) investigate environments in which information collection by a committee

is \static," reminiscent of the classical hypothesis testing. In those models, each individual can

acquire a costly signal about a payo�-relevant state. The aggregation process then introduces free-

riding motives. This contrasts with our setting, where any information collected by the group is

public, with its costs equally shared.

Strulovici (2010), Chan et al. (2018), and Henry and Ottaviani (2019) consider environments in

which information collection is sequential: the committee decides at each date whether to continue

acquiring costly information, or whether to stop and choose an alternative. In particular, Chan

et al. (2018), which our dynamic group treatments mimic, as well as Henry and Ottaviani (2019),

and McClellan (2017) build on the literature on sequential hypothesis testing that started with

Wald (1947).

In terms of experiments, there is a large literature that studies how individuals collect and

process information statically. Many papers consider the collection of information when agents

have non-instrumental motives, for example seeking con�rmatory information as in Fischer et al.

(2005) or ego-promoting information as in Eil and Rao (2011). Relatively few papers study exper-

imentally how individuals trade o� precision of payo�-relevant information and its costs, which is

at the heart of the classic hypothesis testing paradigm. Ambuehl and Li (2018) elicit valuations

of payo�-relevant information structures. They show that valuation of useful information under-

reacts to increased informativeness and that individuals value information that may yield certainty

disproportionately highly. Ho�man (2016) uses a �eld experiment in which business experts are

compensated for their guess of the price and quality of actual websites. Participants can acquire a

costly signal before deciding. He also �nds that participants underpay for information when signals
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are valuable and overpay when signals are less valuable. Our static treatments add to this literature

by illustrating how both individuals and groups resolve the accuracy-cost trade-o�.2

To our knowledge, there is little experimental work that speaks directly to the sequential sam-

pling setup.3 Several papers inspect individual dynamic search behavior experimentally, see Gabaix

et al. (2006), Brown et al. (2011), Caplin et al. (2011), and references therein. In these experiments,

participants also spend resources over time in the hopes of identifying a good alternative. However,

the underlying optimization problem is quite di�erent from ours.

The neuroscience literature has produced a rich body of work that inspects binary perceptual

tasks. Response times are often interpreted as costly, turning the problem into a sequential sampling

one, often termed the drift-di�usion model. Much of the focus of this literature concerns the

association between correct choice rates and response times, see for instance Swensson (1972),

Luce et al. (1986), Ratcli� and Smith (2004), and Ratcli� and McKoon (2008). The main insight

emerging from this literature is that quick decisions tend to be more accurate. This insight is in

line with our observation of declining thresholds in the dynamic treatments: as time passes, our

participants stop information collection with less certainty on the correct choice. An important

contrast with these studies is that we observe|in fact, provide|the posterior probability that any

choice is correct over time. This allows us to speak directly to new theories of dynamic choice that

have emerged recently, see Baldassi et al. (2020) and Fudenberg et al. (2018).

2 Experimental Design

At the core of our experimental design is the choice of the amount of information to acquire prior

to making a binary decision. There are two possible states: A and B. Although neutrally labeled in

the lab, these can stand for a guilty or innocent defendant in the jury context, a good or bad policy

in the political context, a pro�table or unpro�table investment in a �nancial context, etc. At the

start of each period, one of the states is chosen at random with equal probabilities. Participants

ultimately need to guess which state had been chosen and are paid according to whether or not their

2Several studies inspect information collection in strategic settings di�erent from ours. See for example, Elbittar
et al. (2016) and Bhattacharya et al. (2013), who consider information aggregation settings in which individuals
acquire private information, Szkup and Trevino (2015), who explore information collection in the context of global
games, or Gretschko and Rajko (2015), who focus on auctions.

3 Interestingly, the idea of using sequential experimental designs has been suggested in various contexts, see El-
Gamal and Palfrey (1996), Chapman et al. (2018), Imai and Camerer (2018), and references therein.
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guesses are correct. In the lab, participants receive$2 for a correct guess and nothing otherwise.

Prior to making a choice, participants have access to information that evolves according to a

continuous-time Weiner process. When the state isA, the process has drift� and variance� 2; When

the state is B , the process has drift� � and variance� 2. Throughout our treatments, � = 0 :84 and

� 2 = 1

There are two dimensions that we vary across our treatments: whether information acquisition

decisions are static or sequential and whether choices are made by individuals, groups using majority

rule, or groups using unanimity rule.

In what follows, we begin by describing our sequential treatments, which are the more novel

part of our experiment. The design choices of the dynamic treatment also guided our choices for

the design of the static treatments, which are described next.

Sequential Sampling In our dynamic treatments, participants observe the information evolve

over time and, at each instant, have a choice of guessingA, B , or waiting for further information

by choosingW . Time spent acquiring information comes at a �xed cost of 40 cents a minute.

In the treatment in which individuals make decisions on their own|the Individual Dynamic

treatment|a round ends for a participant as soon as he or she selects one of theA or B guesses.

In our group treatments, participants are randomly matched to create groups of 3 in each round.

A round ends as soon as a quorum ofq individuals agrees on anA or B guess. In the Majority

Dynamic treatment, q = 2, whereas in the Unanimity Dynamic treatment, q = 3. As long as a

quorum has not been reached, participants can change their decisions betweenA, B , and W at any

time. Throughout, participants observe choices others made within their group.

Static Sampling Our static treatments mimic the setting of the classical hypothesis testing

environment. At the beginning of each round, participants decide on the amount of time they

would like to spend collecting information. As in the dynamic treatment, information costs are

�xed at 40 cents a minute.

When individuals make decisions independently|the Individual Static treatment|they observe

the information evolve for their desired time.4 Their guess is then automated to re
ect the state

4This design was chosen for two reasons. First, we wanted to maximize comparability with the sequential-sampling
treatments. Second, we wanted to o�er participants su�cient learning opportunities.
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that is more likely given the information collected: either A or B .5

Our static-sampling group treatments are analogous to those corresponding to the dynamic

treatment. In each round, participants are matched into groups of 3. At the outset of each round,

participants submit simultaneously their desired waiting time. The resulting group waiting time

is the median desired waiting time of group members in our Majority Static treatment; it is the

maximal desired waiting time of group members in our Unanimity Static treatment. As in the

individual variant, participants observe the information evolve for the group's waiting time. The

group guess,A or B is again automated to best respond to the information collected.

Feedback and Payments In all treatments, the feedback at the end of each round contains

participants' payo�s and other group members' choices whenever relevant.

Each treatment was preceded by two practice rounds, followed by 30 \real" rounds. Participants

were ultimately paid for 20 randomly selected rounds.

Information Processes The 30 information processes experienced by participants were identi-

cal across treatments. These processes were selected in the following way. We randomly generated

15 Weiner processes, with the parameters speci�ed above, that are \representative" in that the

mean, median, and �ve quintiles of the theoretically optimal sequential stopping times matched

those of the underlying distribution (see the following section for a description of the theoretical

predictions). These processes correspond to the �rst 15 real rounds in each treatment. The last 15

processes in each treatment were derived by generating the re
ected \mirror images" of the �rst

15 processes. Namely, whenever the realized state in the original process wasA (or B ), it was B

(or A) in the re
ected processes. Furthermore, at any time t, if the original process indicated a

probability p that the state is A, the re
ected process indicated a probability 1� p that the state

is A. The re
ected processes were used in the same order as the original processes. In that way,

participants e�ectively faced the same 15 decision problems twice during a session, with a gap of

15 rounds in between. This design element allows us to evaluate learning in a highly controlled

fashion.6

5The guess is automated in order to reduce noise in our data. Because participants' guesses in the Individual
Dynamic treatment best respond to the information 98% of the time, it is unlikely this restriction impacts our
qualitative results. Note that this choice could not easily be automated in the dynamic treatment.

6Because we describe the evolution of a process over time through posterior probabilities that change over time
(on our interface, �ve times a second), it is practically impossible for subjects to identify these e�ective process

9



The evolution of a Weiner process continuously provides information on the likelihood of either

state prevailing. Nonetheless, the Bayesian calculus necessary to deduce this likelihood is non-trivial

and this di�culty is orthogonal to our investigation. Indeed, it is well known that lab participants

are frequently challenged by statistical updating, see references in our literature review. In order

to mitigate the impacts of subjects' limitations exclusively pertaining to statistical analysis, in our

design, participants are presented with the evolution of theprobability that the state is A directly.

Auxiliary Elicitations At the end of each session, participants completed two risk-elicitation

tasks as in Gneezy and Potters (1997). Namely, participants were provided with 200 tokens that

they had to allocate between a safe investment, returning token for token, and a risky investment

with mean higher than 1 and non-trivial variance (e.g., one paying 2:5 the amount invested with

probability 50%). In addition, participants participated in two dictator-games, one in which the

amount of tokens transferred was translated 1 : 1 and one in which the amount of tokens transferred

was doubled for the recipient. Participants were paid for one randomly-chosen risk-elicitation task

and one randomly-chosen dictator game.7

Summary The experiments were run at the Princeton Experimental Laboratory for the Social

Sciences (PExL) with 254 participants. Each treatment entailed at least four sessions for each

group treatment, with at least 12 participants in each. Table 1 summarizes our treatments and

the corresponding volume of participants. The experimental software was programmed using oTree

(Chen et al., 2016).

Table 1: Participants and Rounds

Dynamic Static
Participants Rounds Participants Rounds

Individual 34 1,020 31 930
Majority 48 480 48 480

Unanimity 48 480 45 450

repetitions. Such recollection would require the memory of hundreds of ordered values and the realization that they
are mirrored.

7Elicitations were duplicated in order to allow for measurement-error correction as suggested in Gillen et al. (2019).
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3 Theoretical Predictions

We now brie
y discuss the optimal information-collection policies in our various treatments. For

details, see Dvoretzky et al. (1953) or Chan et al. (2018).

We assume a setting as described in our experimental design. An agent assesses which one of

two ex-ante equally likely states, A or B , are realized. Information follows a Weiner process with

a variance of 1. When the state isA, the process has drift � = 0 :84; When the state is B , the

process has drift� � = � 0:84 and variance 1. Tracking this information comes at a 
ow cost ofc.

We assume the agent guesses the state that is more likely once information collection terminates.

For ease of presentation, we normalize the reward for an ultimately correct guess of the state to be

1. With this normalization, the 
ow cost corresponding to that used in our experiments is c = 0 :2.

It is convenient to denote by � 0 � 2� 2. The agent's posterior belief is then given by a Wiener

process, with drift � 0 and instantaneous variance 2� 0 under state A and drift � � 0 and variance 2� 0

under state B . A higher value of � 0 (higher � or lower � ) indicates a more informative process.

Given our parameters, � 0 = 1 :4.

3.1 Static Treatments

The probability of guessing the true state correctly at any given time t is:

Z 1

0

1
p

4�� 0t
e� ( x � � 0t ) 2

4� 0t dx =
1
2

�
erf

� p
� 0t
2

�
+ 1

�
:

In the static setting, a risk-neutral agent maximizes:

max
t

1
2

�
erf

� p
� 0t
2

�
+ 1

�
� c t

The optimal wait time is then:

t � =
2W

�
(� 0)2

32�c 2

�

� 0 ;

where W (�) is the Lambert W or product log function.

With our experimental parameters, t � = 0 :49, or 29:58 seconds, since one unit of time in the
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lab is one minute. Thus, in expectation, a risk-neutral agent maximizes her payo� by waiting for

29:58 seconds.8

Consider now a group ofn > 1 identical agents who choose their desired search times simul-

taneously. The group then collects information for a duration corresponding to either the median

or the maximal speci�ed time. As before, the group guess corresponds to the more likely state

realized when information collection terminates. Group members are (identically) rewarded as in

the one-agent setting.

The utilitarian e�cient equilibrium for the group corresponds to the optimal search time de-

scribed above, namely 29:58 seconds. Furthermore, this choice is a best response for any agent,

regardless of the strategies other agents in the group utilize.

3.2 Sequential Treatments

One of the main contribution of Wald (1945) and the continuous-time counterpart of Dvoretzky

et al. (1953) is to illustrate that, in the sequential-sampling setting, an optimizing agent uses

a simple threshold policy. Namely, at any time t, the agent calculates the log-likelihood ratio

� t = log ( Pr[ A ]=Pr[ B ]). The optimal policy speci�es a pair of cuto�s ( g; G), with G � g, such that

the agent stops information collection and guesses the state isA whenever � t � G. Similarly, the

agent stops information collection and guesses the state isB whenever� t � g.

For � 2 [g; G], let u(� jg; G) represent the expected payo� from the deliberation process. A

similar derivation to that of Chan et al. (2018) yields:9

u(� jg; G) =
eG(e� � eg) + ( eG � e� )

(1 + e� )(eG � eg)

�
c
� 0

(G � � )(eG+ � + eg) + ( � � g)(eg+ � + eG) � (G � g)(e� + eG+ g)
(1 + e� )(eG � eg)

:

The corresponding �rst-order condition with respect to the lower boundary is then:10

@u(� jg; G)
@g

=
� (eG � e� )

(1 + e� )(eG � eg)2

�
eg(eG � 1) �

c
� 0

�
(G � g)eg(eG � 1) + ( eG � eg)(1 � eg)

�
�

= 0 :

8Analysis of this setting in the presence of risk aversion is presented in Section 11.1 of the Appendix. This analysis
suggests that risk aversion has no substantial impact on behavior.

9Our formulation here di�ers from that of Chan et al. (2018) in that they consider discounted utilities, whereas we
consider 
ow costs of time spent on information collection. This modi�cation simpli�es the experimental interface.

10 The �rst-order approach is indeed valid, we omit details for the sake of brevity.
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This condition shows that the cuto�s satisfying the �rst-order condition do not depend on the

current log-likelihood ratio � . Thus, solutions are stationary.

Because the problem is symmetric, the solution satis�esg = � G. The optimal value of G can

then be determined by:

c
�
2eGG + e2G � 1

�
� eG � 0 = 0

With � 0 = 1 :4 and c = 0 :2, we numerically calculate the optimal boundary asG� = 1 :461. Trans-

lated into probabilities, this value becomes e1:461

1+ e1:461 = 0 :81. Thus, in the dynamic version, the

theoretical prediction is that a risk-neutral agent should wait until the probability of the most

likely state is 81%.

Consider now a group ofn > 1 identical agents. At each date, each agent decides whether

she would like to stop and guessA, stop and guessB , or wait. The group continues information

collection until either a majority or a unanimity of agents in the group choose to guess the same

state.

The utilitarian e�cient equilibrium for the group corresponds to the optimal search policy

described above, namely utilizing a threshold of 81%. Furthermore, as long as agents use symmetric

cuto� policies, this choice is a best response for any agent, regardless of the cuto�s chosen by other

agents in the group.

4 Approach to Data Analysis

As may be expected, subjects behavior changes during the early rounds as they learn about the

problem. However, most of the learning that we observe occurs within the �rst 15 rounds. In fact,

we see no evidence for substantial learning at later rounds. For details, see Section 11.4 in the

Appendix. Throughout the paper, we present �gures aggregated across all experimental rounds as

those displayed appear virtually identical when we use either the �rst half or the second half of

our sessions. Regression results are presented for data corresponding to all rounds and to the last

15 rounds. Recall that, in our design, the �rst and last 15 rounds utilized the same ordered set of

information processes. Thus, the sample of settings participants encounter in the �rst and second
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half of each session is identical.

Risk attitudes and altruism proclivities do not appear to explain any aspect of our data, even

after measurement-error correction. We therefore do not include data from these elicitations in our

main speci�cations. Section 11.3 in the Appendix o�ers some additional analyses that explicitly

speak to this claim.

5 Broad Patterns of Behavior

Table 2 displays an aggregate overview of some of our results. It illustrates the mean posterior

when a decision has been made and the mean time for a decision across our treatments. As can

be seen, our Individual and Majority Dynamic treatments lead to less accurate decisions than

theoretically predicted, whereas the Unanimity Dynamic treatment yields outcomes that are statis-

tically indistinguishable from those theory predicts. Furthermore, the Majority Dynamic treatment

corresponds to the least amount of waiting, an observation we shall return to.

Di�erences between observed decision posteriors and those predicted by theory may, at �rst

blush, appear small. Nonetheless, these di�erences translate to large di�erences in wait times.

For instance, the Unanimity Dynamic treatment leads to double the wait time compared to the

Majority Dynamic treatment. This is a common feature in information-collection settings, where

the cost of precision is e�ectively convex|the higher is the current posterior precision, the more

time needs to be spent to establish a certain marginal precision increase.

Static treatments yield excessive waiting relative to that predicted by theory. Again, the

majority-rule treatment generates the hastiest decisions, though di�erences are not signi�cant.

When comparing the static and dynamic treatments, we see that, contrary to the theoretical

predictions, mean decision times are longer in the static treatments. Furthermore, mean poste-

riors at decision times are comparable or only slightly lower than those observed in our dynamic

treatments, which is also in contrast with theoretical predictions. These observations have clear

welfare implications. When committees collecting information make decisions that a�ect a large

population, such as juries, the FDA, and so on, the population welfare, captured by the quality

of decisions, is similar under both static and dynamic protocols. We return to this point when

discussing performance in our di�erent treatments in Section 8.
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Table 2: Aggregate Behavior

Dynamic Treatment Static Treatment
Mean Posterior Mean Time Waited Mean Posterior Mean Time Waited

All Rounds Last 15 All Rounds Last 15 All Rounds Last 15 All Rounds Last 15

Individual
0.77 0.78 33.56 37.55 0.75 0.75 41.69 40.45

(0.003) (0.005) (0.687) (1.12) (0.004) (0.006) (0.561) (0.824)

Majority
0.73 0.73 23.07 24.38 0.74 0.74 36.25 34.48

(0.002) (0.003) (0.335) (0.51) (0.003) (0.005) (0.326) (0.515)

Unanimity
0.82 0.84 46.71 53.68 0.76 0.75 40.46 37.77

(0.002) (0.003) (0.724) (1.11) (0.004) (0.005) (0.343) (0.547)
Theory 0.81 39.03 0.72 29.58

Standard errors in parentheses

Figure 1 depicts the evolution of posteriors and the choices made in each of our 15 processes in

the individual treatments, both static and dynamic. Our use of identical processes across treatments

allows for such a direct comparison. In order to simplify the presentation, each panel aggregates

observations from two re
ected processes (for example, panel 1 corresponds to the �rst and sixteenth

process, panel 2 to the second and seventeenth process, etc.). The Figure illustrates the point at

which individuals \pulled the trigger."

The Figure suggests some important themes that appear in our more detailed analysis below.

First, it is apparent that decisions are quite heterogeneous, with some individuals demanding a

lot more accuracy than others. Second, many observations are close to optimal. In particular, in

the dynamic setting, participants clearly respond to information in that decisions are more highly

clustered around higher posteriors. Moreover, many decisions are taken with accuracy predicted by

theory (and corresponding to the horizontal dashed lines within each panel). Third, individuals in

the dynamic setting appear to be more lenient over time, requiring less accuracy to stop. Consider,

for example, process 10. Several individuals decide late in the process, when posteriors are close

to 50%, despite choosing not to stop at two earlier points, when posteriors were close to 80%.

Last, because in the static treatment individuals cannot condition their choices on the history, the

resulting decision posteriors are far more dispersed. Processes 2 and 14 provide extreme examples.

In these processes, some static decisions involve a substantial wait time, but culminate in decision

posteriors of around 50%. Continuation would clearly be preferable if agents could see the posterior

(as they do in the dynamic setting). In contrast, in processes 12 and 15, some static choices take

place at extremely high posteriors. Earlier stopping could have been preferable if agents had been

able to condition their behavior on the history.
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The analogous �gure for our majority and unanimity treatments appears in Section 11.2 in the

Appendix. As we soon discuss, behavior is di�erent in those treatments and it is natural to compare

only pivotal agents under the two decision protocols, majority and unanimity. Nonetheless, some

observations remain. We see heterogeneous decisions, responses to information and more leniency

over time in the dynamic treatments, and decisions at extreme posteriors, either low or high, in

the static treatments.

Figure 1: Pulling the Trigger: Individual Treatments

In what follows, we analyze the behavior that underlies these initial observations. The next

section describes behavior in our dynamic treatments. The section that follows o�ers a comparison

with their static counterparts.

std(pdynamic ) = 0 :990, std(pstatic ) = 0 :134, std(tdynamic ) = 23 :22, std(tstatic ) = 15 :16

6 Sequential Information Collection

6.1 The Impacts of Decision Procedures

We consider three procedures for information collection and choices: by individuals, by groups using

majority, and by groups using unanimity. Figure 2 displays the cumulative distribution functions

of decision posteriors on the left panel, as well as induced times on the right panel, for each of
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