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Abstract

Does the order and timing of information arrival affect beliefs formed within a group? We

address this question by extending the DeGroot social learning model to allow for sequential

information arrival. We find that the final beliefs can be altered by varying only the sequencing

of information arrival, keeping the information content unchanged. We identify the optimal and

pessimal information release sequences that yield the highest and lowest attainable consensus,

respectively. In doing so, we bound the variation in final beliefs that can be attributed to the

variation in the sequencing of information. We show that groups in which all members are

equally influential are those most susceptible to information sequencing. Finally, with regard

to information aggregation, as the number of group members grows, the sequential arrival of

information compromises the group’s beliefs: in all but particular cases, beliefs converge away

from the truth.
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1 Introduction

1.1 Overview

In a wide range of settings, social learning is a vital channel of information transmission. Examples

abound: the members of hiring committees rely on colleagues’ impressions of candidates, individ-

uals consider others’ choices when deciding which car to purchase, to which schools to send their

children, or which political candidates to support. In learning environments like these, informa-

tion often arrives over time. Consider a committee evaluating a candidate, where, in addition to

common information—the candidate’s CV, letters of recommendation, etc.—each member receives

additional private information—e-mails from advisors, conference interactions, and so on. Some

of the information might work in the candidate’s favor while some might not. Does it matter if

information arrives all at once or in sequence? Does it matter if good news arrives first, followed by

bad, or vice versa? Do features of the committee, such as the social influence of various members,

interact with the timing of information? These questions are at the heart of this project.

Under Bayesian learning, the order by which agents receive information has no impact in and

of itself. Nonetheless, Bayesian updating is arguably demanding in such settings in terms of both

calculation complexity and the information required about the underlying network of connections.

Consequently, going back to DeGroot (1974), a large literature has focused on naive social learning,

where agents use simple heuristics to update their beliefs. In this paper, we study the impact of

information timing when agents learn naively. We show that the sequencing of information can

have a large impact. This impact is particularly pronounced in “equal” societies, where each agent

has the same social influence. Furthermore, information order effects can be important even in the

limit: even when the information available to society leaves little aggregate uncertainty, for many

information arrival sequences, naive learning leads to biased consensus beliefs.

In settings in which agents act sequentially but take actions only once, strategic concerns are

limited. Therefore, it is typically assumed that agents update their beliefs via Bayes’ rule. On the

other hand, when agents act repeatedly, despite its normative appeal, the requirement of Bayesian

updating is arguably strong. A growing body of literature, both theoretical and experimental,

casts doubt on the ability of individuals to meet the demands of Bayesian updating, especially in
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complex environments, where doing so is cognitively demanding.1 For proper Bayesian updating,

in a network setting with repeated actions, agents would have to know the full network structure,

the precision of each agent’s information, and the full timing of information arrival, and keep track

of all these variables simultaneously. Alternatively, in addition to their beliefs, agents would have

to reliably communicate the sources of information, the sources of their sources, and so on. In such

cases, the state-space expands rapidly with the number of rounds.2 The cognitive demands required

to carry out such procedures are substantial. Consequently, the literature has identified simpler,

less demanding updating heuristics. Departing from Bayesian learning in such environments opens

up a new dimension of interest: it allows for the timing and order of information arrival to affect

the final beliefs.

To study the effect that the timing and order of information have on beliefs formed by a group,

we analyze a setting in which a group of agents repeatedly guess a state of interest while observing

previous guesses of other group members they are connected to. Concretely, we extend the classic

DeGroot (1974) naive social-learning model to allow for sequential information arrival. Under

DeGroot learning, agents update their beliefs by taking weighted averages of their past beliefs and

the past beliefs of other group members they pay attention to. Importantly, the weight each agent

places on others is assumed to be fixed. The reduced complexity requirement, coupled with the

tractability of DeGroot learning, has led to the model’s proliferation in the study of social learning

with repeated updating.3 In the model we analyze, each agent is associated with a private signal, a

time at which the signal arrives, and a fixed weight the agent places on the signal once it is received.

Information arrives at specific rounds. In particular, a single agent or a group of agents may receive

their private signals at different times. After each information release, communication takes place,

and the new information disseminates in the network, leading to a new consensus. Subsequently,

other agents receive their private signals, followed by communication, and so on; until all agents

receive their private signals. From this point onward, communication takes place as in the DeGroot

1See Section 1.2 for the relevant work.
2For further discussion see DeMarzo et al. (2003). Alternatively, we can consider a setup in which agents do not

have complete information of the network structure or the quality and timing of the signals. In such cases, based on
the observable information, agents would have to update their beliefs about the network structure and features of
information quality and timing in each period. Doing so is at least as cognitively demanding as the setup discussed
above.

3Several experimental papers find that the DeGroot model explains observed data well, while recently, an axiomatic
foundation of the model has also been established. See Section 1.2 for the relevant papers.
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model.

Our first finding is that the sequence of information arrival affects the group’s final beliefs,

even when the network structure and the signals associated with each agent are fixed. In other

words, although the environment and the objective evidence are unchanged, the order by which

this evidence is presented leads to different final beliefs. The influence a signal has on the group’s

final beliefs depends on the weight that the agent receiving it places on the signal, the network

influence of this agent, and the time at which the signal was received. As it turns out, the earlier

a signal is released, the lower its weight will be on the final beliefs formed by the group. This

observation allows us to identify the information release sequences that yield the highest and lowest

attainable consensus. In particular, these sequences that attain the extreme consensus values release

information in a monotonic order, from lowest to highest, or vice versa, with a possible joint release

of information in the last round. By identifying these sequences, we bound the variation in the

final beliefs that can be attributed to the timing and order of information release. Thus, within

our framework, whatever the timing and order of information turn out to be, the final beliefs must

fall within the identified bounds.

Next we analyze features of the underlying network that affect its susceptibility to the sequencing

of information. In particular, we take an ex-ante approach and assess how the expected gap between

the highest and lowest attainable consensus beliefs differ as the in
uence of each group member

changes. Formally, in
uence corresponds to the eigenvector centrality of an agent. This measure

is commonly used in the social-network literature as a proxy for agents’ “centrality”. An agent’s

influence depends on the network structure, how many other members listen to the particular group

member, and what weights they place on her opinion. We find that the expected gap is maximized

when the influence is uniformly distributed across all group members. That is, groups in which each

member has equal voice are groups most susceptible to manipulation through information timing.

Our final set of results relates to the group’s ability to adequately aggregate information as

the number of group members grows. The wisdom of crowds, first analyzed in Golub and Jackson

(2010), states that under DeGroot learning, in large societies where no agent is disproportionately

influential, beliefs converge to the realized true state, as would beliefs under optimal updating.

With sequential information arrival, however, we find that wisdom generally fails, and beliefs

converge away from the truth even as the number of agents grows large. We emphasize that

4



wisdom typically fails if agents have a prior with regard to the state they aim to learn. In cases

with limited information, the prior helps create a more efficient estimate of the realized state.

However, when information is abundant and sufficient for the realized state to be fully revealed,

the impact of the prior optimally washes away. In the current setting, although the influence of

the prior diminishes with each round of information release, this influence does not reduce all the

way to zero, and consequently, the prior affects the final consensus.

We show that even in cases in which agents have an uninformative prior—think of learning

about a new product, a new political candidate, etc.—their beliefs may nonetheless converge away

from the truth if information is released sequentially. What causes wisdom to fail in this case is

the distorted weights placed on signals arriving at different times. Because these weights depend

on the timing of the signals’ release, if there is any correlation between the value of the signals

and the round at which they are released, the final beliefs converge away from the truth. However,

wisdom persists if agents have an uninformative prior and there is no relation between the value of

the signal and the round at which it is released. This set of findings reveal that once we consider an

environment with sequential information arrival, the ability to adequately aggregate information is

greatly compromised, in all but very specific cases wisdom fails.

Taken together, this work emphasizes that not only the information content but the timing and

order by which this information arrives play a role in determining the final beliefs formed via naive

social learning.

1.2 Related Literature

In the sequential learning literature, where agents act only once, the Bayesian learning approach

has been quite standard, see Banerjee (1992), Bikhchandani et al. (1992), Smith and Sørensen

(2000), Acemoglu et al. (2011), Lobel and Sadler (2015). By acting only once, agent’s strategic

concerns are rather limited, making Bayesian learning seemingly a reasonable assumption. That is

not to say that non-Bayesian models are not present in this setting, see Eyster and Rabin (2010),

Bohren (2016), Dasaratha and He (2020), to name a few.

The Bayesian paradigm has been applied on settings with repeated actions in paper such as

Gale and Kariv (2003), Rosenberg et al. (2009), Mueller-Frank (2013), Mossel et al. (2015), Mossel

et al. (2020). These papers either limit the strategic interactions, for example, Gale and Kariv
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(2003) assume that agents observe only the distribution of actions, and that each agent is a small

enough part of society for their actions to not affect aggregate outcomes, and consequently, greatly

reduce strategic concerns; or study aspects such as whether there will be agreement and proper

information aggregation at the asymptotic steady state. While understanding features of Bayesian

learning in this setting is of great importance, the complexity required to carry out such learning

in practice is immense. Hazla et al. (2019) study the complexity required for Bayesian learning in

repeated action settings, and in line with what has anecdotally been accepted for a long time, find

that it is rather extreme.4

That carrying out proper Bayesian updating is so complex presents an issue since experimental

works such as Kübler and Weizsäcker (2004), Choi et al. (2008), Choi et al. (2012), Corazzini et al.

(2012), Eyster et al. (2015), Enke and Zimmermann (2017), Brandts et al. (2015), Chandrasekhar

et al. (2020) show that people tend to make far from optimal choices in rather straightforward

environments requiring basic inference. To avoid the requirements for complexity that seems far

beyond what humans can reasonably achieve, and to gain additional tractability, there is a large

body of literature studying social learning with repeated actions under non-Bayesian learning.

Papers such as Bala and Goyal (1998), Levy and Razin (2018), Mueller-Frank and Neri (2020), fall

within this category. Non-Bayesian papers closest to this work are DeGroot (1974), DeMarzo et al.

(2003), Golub and Jackson (2010) and Banerjee et al. (2019).

To a large extend, the DeGroot model, first analyzed in DeGroot (1974), and further studied

and motivated in DeMarzo et al. (2003) in a framework relevant to this paper, has emerged as

the canonical social-learning model in settings with repeated actions. This model, with it’s rather

straightforward heuristics, provides a simple way of updating beliefs, and thus, does not suffer

from the overwhelming complexity as would be the case with proper Bayesian updating. The

model is also very tractable, and calculating where beliefs ultimately converge is straightforward.

In addition, experimental studies such as Chandrasekhar et al. (2020), Grimm and Mengel (2020),

Brandts et al. (2015) suggest that the model approximates observed behavior often better than the

benchmark Bayesian model.5 In a companion paper, Reshidi (2020) we reach similar conclusions

4In particular Hazla et al. (2019) show that the problem is PSPACE-hard.
5In a village field experiment and in a student experiment, Chandrasekhar et al. (2020) find the share of Bayesian

agents to be 10% and 50% respectively. Grimm and Mengel (2020) find that in explaining individual level decisions
the Bayesian model is outperformed by the DeGroot model. Brandts et al. (2015) find that, in line with the DeGroot
model, agents who have more outgoing degrees have a greater influence on the final consensus.
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in a setting where information arrives sequentially. Furthermore, Molavi et al. (2018) develop

axiomatic foundations of the DeGroot model.6

Finally, of relevance for this project is the work of Golub and Jackson (2010) and Banerjee

et al. (2019). The former studies the information aggregation properties of the DeGroot model,

and identifies conditions under which, as the number of agents grows, the final beliefs of the group

converge to the truth; while the latter extends the model to allow for uninformed agents.

2 Model

2.1 Model Description

A set of agents, connected via a social network, seek to figure out a fundamental truth. Each

individual receives a noisy private signal with regard to the truth. Not all individuals receive

information at the same time. For some, the private signals may arrive early on, while others

might have to wait longer to receive their private signal. Since each agent’s signal is noisy, agents

benefit from communicating with one another. Importantly, the network serves as a channel of

information dissemination. The network structure is represented by a directed graph illustrating

to whom each agent listens to and how much they “trust” each of these sources. This network

structure is assumed to be exogenous. It may represent social networks, organizational relations,

geographical proximity, etc.

Agents communicate with one another between each round of information arrival, allowing

information to disseminate across the network. In such a setup, Bayesian agents would adjust the

“weight” they place on their neighbors’ opinions multiple times. In practice, however, there are

several reasons why agents may fail to adjust these weights perfectly. To adequately accommodate

these weights agents would have to not only perfectly know the network structure, but also know

the exact timing of information arrival for each other agent in the network. Furthermore, they

would need to have common knowledge of rationality, common knowledge that all other agents

know the whole network structure, and know the exact timing of information arrival, so that they

know how to weigh each opinion of their neighbors adequately. Even with this knowledge, agents

6Molavi et al. (2018) find that DeGroot learning it is the unique learning rule to satisfy imperfect recall, label
neutrality, monotonicity and seperability.
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would have to keep track of a state-space that grows rapidly after each round, as they would have to

keep track of the whole network structure and how each of their neighbors’ opinions is affected. The

same demand for knowledge and complexity is related to the weights agents place on their private

signal once it arrives. The central assumption made in this paper is that instead of adjusting the

weight that agents place on their neighbors and their own signal after each round, agents continue

to “value” their neighbors’ beliefs with the same weight and set the same weight on their signal

once it arrives, regardless of when it arrives.

In this section, we assume that there are enough rounds of communication between each infor-

mation release round to allow for the network beliefs to converge. This assumption is made for

tractability purposes, and we relax it later on. We identify where beliefs finally converge after all

information has been released and disseminated in the network. The final consensus turns out to

be a weighted average of the initial consensus, and each agent’s private signals. The weight that a

signal attains depends on the importance that the agent who received it initially places on it, the

social influence of that agent, and the time when that signal was received.

2.2 Formal Model

A finite set N = {1, 2, . . . , n} of agents interact with each other through a social network. Each

agent is represented by a node while their interactions are captured by a n×n nonnegative matrix

M . The matrix M is a stochastic matrix, implying that the sum of each row is normalized to add

up to one. The matrix may, but is not required to be symmetric, that is mij is not necessarily

equal to mji, where mij represents the entry on row i and column j of the matrix M . Entry mij

captures the attention, or the weight that agent i places on agent j.

Agent i in time t ∈ {0, 1, . . . , } has belief bi,t ∈ R. We let bt represent the vector of beliefs

of all agents in time t. Agents start with a common belief c0, thus, all entries of b1 are equal to

c0. Associated with agent i is a signal si which the agent receives at time t̂i. Let λi represent the

weight agent i places on their own signal once it arrives. Let γ(k) represent the agents for whom

information arrives in time k, that is, i ∈ γ(k) if t̂i = k. The signals arrive after communication
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has taken place in that round; hence, the vector of beliefs evolves as follows7

bt = (I − Γt) ◦Mbt−1 + Γt ◦ ((I − Λ) ◦Mbt−1 + Λs) (1)

Where ◦ represents the element-wise product or the Hadamard product, Γt is a diagonal matrix

with γii = 1 if i ∈ γ(t) and γii = 0 otherwise, and Λ is also a diagonal matrix with λi being the

diagonal entry in row i and column i. Thus, the beliefs of agent i are as follows

bi,t =

 (1− λi)
(∑N

j=1mijbj,t−1

)
+ λisi if t = t̂i∑N

j=1mijbj,t−1 if t 6= t̂i

Hence, if agent i does not receive their private signal in round t, t 6= t̂i, they form their new beliefs

by simply taking a weighted average of their own previous period beliefs, as well as the beliefs of

the agents they pay attention to, or are connected via a social network with, all agents j 6= i such

that mij > 0. When, however, agent i receives a signal, beliefs are updated in the same manner

and afterwards the signal is incorporated with weight λi.

Note that in all rounds in which participants do not receive a private signal updating is carried

out as in the classic DeGroot model. That is, for any agent, beliefs in time t are a weighted average

of their own and their neighbours beliefs in time t − 1. The departure is then with regard to

incorporating private signals in a sequential manner. We can think of the DeGroot model as a

special case of the current model where all private signals arrive in round t = 1, and all that is

left is for agents to repeatedly calculate weighted averages of their social network until a consensus

emerges.

Similar to DeMarzo et al. (2003) who motivate the evolution of beliefs in the classic DeGroot

mode as a bounded rationality model, we can think of a bounded rationality setup for the current

setting. We can interpret the current setting as one in which a finite set of agent N = {1, 2, . . . , n}

attempt to estimate a parameter of interest θ ∈ R. Signals participants receive can be thought of

7For the analysis in this paper this will be equivalent to information being processed at the beginning of the round,
with the alternative release time t̃i = t̂i + 1, and the equation representing the the evolution of the vector of beliefs
would be

bt = M ((I − Γt) bt−1 + Γt ((I − Λ) bt−1 + Λs))
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as noisy measures of the parameter of interest, si = θ + εi with E [εi] = 0. While each signal is

unbiased with respect to the parameter of interest, each signal is noisy, thus, agents can improve

their estimation of θ by paying attention to the actions of others. In line with this interpretation,

we can think of the initial consensus c0 as the mean of the prior distribution of θ. If the prior and

the individual signals are normally distributed, and the signals are independent, the weight that a

Bayesian agent would place on each signal would be proportional to the precision of the signal. We

can then think of the weight that agent i places on the opinion of agent j, as being proportional

to the signal precision of agent j. Similarly, the weight that the agent place on their own signal

need not be ad hoc, rather, it may be proportional to the precision of the signal. Of course, the

bounded rationality element comes into play as agents continue to use the same weight on thought

all rounds of communication. For a more in depth discussion of the bounded rational interpretation

refer to DeMarzo et al. (2003).

2.3 Belief Convergence

Let us begin by analyzing how beliefs evolve within rounds in which no new information is released.

Let bt represent the vector of beliefs that agent’s hold in period t, and let M once more represent the

network structure. No information release in equation 1 corresponds to Γ being a null matrix. As a

result, beliefs in the next period can be expressed as bt+1 = Mbt. That is, in line with the DeGroot

model, the new formed beliefs of each agent are weighted averages of the beliefs of the agents they

pay attention to, possibly including themselves. Continuing in this fashion, as long as no new

information is released, beliefs in round t+ 2 can then be expressed as bt+2 = Mbt+1 = M (Mbt) =

M2bt. We can express beliefs with k rounds of no information release as bt+k = Mkbt. A natural

question then arises, with no further information release, if agents continue to communicate with

one another, will their beliefs converge and thus give rise to a consensus in beliefs?

The matrix M can be thought of as a transition matrix of a Markov chain. It is well known

that if the matrix M is strongly connected and aperiodic then M is convergent.8. This matrix

8See Kemeny and Snell (1960). A matrix is strongly connected if there is a path from any node, to any other
node. The period d(k) of a state k of a matrix M is given by d(k) = gcd

{
m ≥ 1 : Mm

k,k > 0
}

. Where gdc(·) stands
for greatest common divisor. If d(k) = 1, then state k is aperiodic. Matrix M is aperiodic if and only if all its
states are aperiodic. An alternative definition of aperiodic is the following. The chain is aperiodic if and only if there
exists a positive integer n such that all elements of the matrix Mn are strictly positive, [Mn]ij > 0 ∀ i j. A strongly
connected matrix is aperiodic, trivially if each agent places at least some weight on their own past actions mii > 0.
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has a unique eigenvalue equal to one, while all other eigenvalues have modulus smaller than one.

Furthermore, there is a unique left row eigenvector π satisfying πM = π corresponding to eigenvalue

1, with
∑

i πi = 1, such that for any initial vector of beliefs bt

lim
k→∞

bi,t+k = lim
k→∞

(
Mkbt

)
i

= πbt

Thus, with a strongly connected and aperiodic network matrix M if enough rounds of communi-

cation take place between information release rounds, beliefs will converge to a consensus. Fur-

thermore, the consensus will be formed by a convex combination of the starting beliefs, where the

weight of each belief is represented by the corresponding πi value on the left eigenvector. We can

think of πi as the influence of agent i, as it captures the weight that the initial belief of agent i has

on the consensus.

We now consider where beliefs converge after each round of information release, and where

beliefs converge after the final round of information release. We will denote beliefs as b
(k)
i,t , where i

represents the agent, k stands for the number of information release rounds, while t represents the

round number since the last information release. Furthermore, initial beliefs after new information

has just been released will be denoted as b̃
(k)
i = b

(k)
i,1 while beliefs after communication has taken

place will be represented by b̂
(k)
i = b

(k)
i,∞. From the discussion above, we know that after enough

rounds of communication beliefs will once more converge, and for any i and j, b̂
(k)
i = b̂

(k)
j = c(k),

where c(k) represents the new consensus, after the k’th round of information release. From the

above discussion we also know that the new consensus will be equal to c(k) =
∑N

i=1 πib̃
(k)
i . Thus

the beliefs immediately after new information is released are

b̃
(k)
i =

 (1− λi) c(k−1) + λisi if i ∈ γ(k)

c(k−1) if i 6∈ γ(k)
(2)

While the beliefs after information has been released and communication takes place will be

b̂
(k)
i = c(k) =

1−
∑
j∈γ(k)

πjλj

 c(k−1) +
∑
j∈γ(k)

πjλjsj (3)

After each round of information release, and after communication takes place, a new consensus
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arises. The new consensus is a convex combination of the old consensus and the signals released in

that information round. The weight that the signals receive depends initially on the weights that

the agents who received them place on their own signals, namely λi. Naturally, if agents ignore

their own signals, the signals would fail to affect the beliefs of others. Furthermore, the impact that

each signal has on the new consensus depends on the influence measure, πi, of the agent receiving

the signal. Not surprising, regardless of how much weight an agent places on their own signal, if

the rest of society places little weight on them, their signal will have a modest influence on the new

consensus. We have now laid the groundwork to state the following proposition.

Proposition 1 (Belief Convergence). Let M be a strongly connected and aperiodic matrix repre-

senting the social network, Λ a vector of weights agents place on their own signal, once they arrive.

Furthermore, assume that between each information round communication takes place for enough

periods for a consensus to be reached. After the �nal round of information release, the beliefs of all

agents converge to the consensus belief

c(K) =

K∑
k=1

 K∏
z=k+1

1−
∑
j∈γ(z)

πjλj

 ∑
i∈γ(k)

πiλisi +

K∏
k=1

1−
∑
j∈γ(k)

πjλj

 c(0)

c(K) represent the final consensus after all information has been released and communication

has taken place. Recursive replacements of c(k) in equation 3 leads to the equation in Proposition

1. As can be seen, if a signal is released in information round k the weight it has on the final

consensus is multiplied by
∏K
z=k+1

(
1−

∑
j∈γ(z) πjλj

)
. Since each

(
1−

∑
j∈γ(z) πjλj

)
< 1, the

earlier a signal is released, the more it will be discounted, and hence, the lower it’s influence will be

on the final consensus. By how much the weight of a signal is discounted, depends on the influence

that agents for whom information arrives after have, as well as the weight they place on their own

signals.

Hence, the final consensus will be a weighted average of the initial consensus and all the signals

that agents receive. The influence of each signal depends on the weight that the agent who received

it placed on the signal, the social influence of this agent, as well as the time in which the signal

was received.
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2.4 General Weights

From Proposition 1 it becomes clear that the influence the signals have on the final consensus

depends on the timing of their arrival. Consequently, the final consensus itself depends on the

sequencing of information arrival.

As emphasized above, one of the assumptions is that agent i places weight λi on her signal, once

she receives the signal, regardless of when the signal arrives. However, Proposition 2 below reveals

that this is not what drives the dependence of the final consensus on the sequencing of information.

Let n represent the number of agents and K the number information release rounds.

Proposition 2 (General Weights). There exists no λ
(k)
i with i ∈ {1, 2, . . . , n} and k ∈ {1, 2, . . . ,K}

such that the �nal consensus c(K) is independent of the sequencing of information arrival.

That is, even allowing for the weight agents place on their signal to differ for each agent, and

each information arrival round, the final consensus continues to be affected by the sequencing

of information arrival for all possible weights. Knowing that this is not the driving force of the

dependence, for tractability purposes we maintain the assumption of a fixed λi.

3 Sequential Information Arrival

3.1 Example: A Committee Evaluating a Candidate

Consider a committee evaluating the quality of an applicant. Given the common information avail-

able for the candidate, such as the resume, presentation, and so on, the committee members form

some belief c0 with regard to the quality of the candidate. In addition to the common knowledge,

each committee member receives an additional private signal with regard to the candidate’s quality.

In the case of a hiring committee evaluating an academic job market candidate, the private signals

may be direct phone-calls with the candidates advisor, an additional signal drawn from reading the

participants job market paper once more, and so on.9

9Consider the following alternative interpretation. c0 may represent the expected value of the pool of candidates.
In addition to the prior knowledge, committee members have access to the same information for the candidate, such as
the candidate’s resume, job market paper, etc. However, the committee members access this information at different
times. The signals that each member receives can be thought of as their subjective interpretation of the information.
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More formally, consider a social network composed of four members. Member i places weight

mij on the opinion of member j, and weight λi on their own signal, once they receive the signal.

Each communication period, which could be thought of as a chat with other members, committee

members update their beliefs with regard to the quality of the candidate, where their new beliefs are

simply a weighted average of the beliefs of the members they pay attention to, including themselves.

One such network is depicted on Figure 1. A directed link from j to i implies that member i pays

attention to member j, that is mij > 0. Missing links from some member j to some member i

imply that member i pays no attention to, or places weight 0 on the opinion of member j. This

could be a result of physical or organizational constraints, or it could simply imply that member i

chooses to disregard the opinion of member j.

Figure 1: Comittee Example

λ 1

λ2

λ 3

λ 4

m11 m31

m12

m41

m14 m43

m23

m22

m44

m33

s1

1

2

3

4

s2

s3

s4

The network structure can be represented by a matrix M , with entries mij representing the

weight members place on each others opinions. Consider a concrete example with the following
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values

M =



0.40 0.15 0.10 0.35

0 0.65 0.35 0

0.55 0 0.45 0

0.25 0 0.20 0.55


λ =



0.70

0.45

0.65

0.70


c0 = 7 S =



2

3

5

9


The vector λ represents the weights that members place on their own signals once they receive them,

c0 represents the initial beliefs, while the vector S represents the vector of signals that members

eventually receive. The left row eigenvector π corresponding to eigenvalue 1 of the above matrix M

is equal to π = [ 0.34 0.15 0.25 0.26 ]T . Hence, in this particular network the most influential agent

turns out to be the first agent. This is according to the traditional influence measure, which would

capture the amount that each agent influences the final consensus if all information is released

jointly. We now consider two possible signal arrival sequences.

All Signals Jointly In the first case, all signals arrive jointly in the very first round. Each agent

incorporates their private signal leading to the following beliefs b
(1)
i,1 = (1 − λi)c0 + λisi. From

this point onward communication takes place. Committee members communicate their beliefs,

and form new beliefs based on the other members they pay attention to. After enough rounds of

communication beliefs converge.10 From Section 2.3 we know that beliefs converge to the following

value

cT =

4∑
i=1

πib
(1)
i,1 =

4∑
i=1

(1− πiλi)c0 +

4∑
i=1

πiλisi = 5.59

Thus, if all information arrives at the same time and communication takes place via the above

described social network, eventually all members would end up believing that the quality of the

candidate is 5.59.

Two Rounds of Information Arrival Now consider an alternative sequence of information

arrival. The first two members receive their signals immediately, whereas the signals of the other

10It is straightforward to check that the matrix M is strongly connected and aperiodic, thus we know that eventually
a consensus will arise.
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two members are delayed. Beliefs after the first two signals are received will be

b
(1)
i1 =

 (1− λi)c0 + λisi if i ∈ {1, 2}

c0 if i ∈ {3, 4}

After the first two members receive and incorporate their signals communication takes place and

the information disseminates across the network. Once more from Section 2.3 we know that the

beliefs of the members eventually converge to

c1 =

4∑
i=1

πib
(1)
i,1 = 5.54

Where c1 represents the consensus reached after the first round of information release, followed by

communication. Afterwards, the signals the other two members also arrive, and the new beliefs are

as follows

b
(2)
i1 =

 (1− λi)c1 + λisi if i ∈ {3, 4}

c1 if i ∈ {1, 2}

Communication takes place once more and the new information disseminates in the network. The

final consensus, after all four members receive their private signals and communicate is then

c2 =

4∑
i=1

πib
(2)
i,1 = 6.10

With this particular sequence of information arrival, the committee members end up believing that

the quality of the candidate is 6.10. As can be seen, although the network structure, the weight

committee members place on their own signals and other group members opinions, and the signals

associated with each member are unchanged, the sequence of information arrival affected the final

consensus that the group reached. If the committee was comparing the current candidate with

another candidate, the quality of whom they evaluate to be 6, the sequence of information arrival

could have determined whether the candidate gets offered the job.

If we were to calculate the final consensus under other information release sequences, we would

find that the group could have ended up with other final beliefs. Some of which would be lower, in
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between, and even higher than the beliefs reached by the two sequences considered in this example.

A natural question then arises. Is it possible to bound all final consensuses that might arise as a

result of different information arrival sequences, while keeping the network structure, the weights

agents place on their own signal as well as the signal realizations unchanged? If such bounds exist,

would it be possible to identify which information release sequence could produce the most extreme

final beliefs? The next section gives a positive answer to both of these questions.

3.2 Optimal and Pessimal Information Release Sequences

In the example analyzed in Section 3.1 the timing of information arrival was found to affect the final

consensus reached by the agents, even though the network structure and the information content

remained unchanged. In this section we identify the information release sequence that leads to the

highest and lowest attainable final consensus, and in doing so bound all possible final consensuses

that may arise as a result of the timing of information arrival. That is, under the particular model

specifications, whatever the actual sequencing of information turns out to be, the final consensus

will fall withing our identified bounds.

Proposition 3 (Optimal Information Sequence). Without loss of generality let that si < sj if

i < j. Then the �nal consensus is maximized under the following information sequencing

γ(k) =

 k if c(k−1) ≥ sk

{k, k + 1, . . . , n} if c(k−1) < sk

That is, the information sequence that yields the highest attainable consensus releases informa-

tion sequentially in a non-decreasing order, starting from the signal with the lowest value. Under

this information release, the sequential release continues until the prevailing consensus, if ever,

becomes lower than the lowest signal not yet released; in which case, all signals are released jointly.

To build some intuition for this result, note from Proposition 1 that a signal released earlier will

have a lower weight on the final consensus compared to the weight it would have if the same signal

was released in later information rounds. Naturally then, if we aim to maximize the final consensus

we would lead with the low valued signals first, as these signals will be more heavily discounted the

earlier they are released.
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Corollary 1 (Pessimal Information Sequence). Without loss of generality let that si < sj if i < j.

Then the �nal consensus is minimized under the following information sequencing

γ(k) =

 n+ 1− k if c(k−1) ≤ sn+1−k

{1, . . . , k} if c(k−1) > sn+1−k

That is, the information sequence that yields the lowest attainable consensus releases informa-

tion sequentially in a non-increasing order, starting from the signal with the highest value. Under

this information release, the sequential release continues until the prevailing consensus, if ever, be-

comes higher than the highest signal not yet released; in which case, all signals are released jointly.

The intuition for this corollary is similar to the intuition for Proposition 3.

While Proposition 3 identifies the information release sequence that yields the highest attain-

able final consensus, Corollary 1 identifies the information release sequence that yields the lowest

attainable final consensus. In doing so, within the analyzed framework, we bound all the possible

final consensuses that may arise as a result of the changes in the timing of information arrival.

Furthermore, Proposition 3 and Corollary 1 reveal that to identify the optimal and pessimal

information release sequence we do not need to search through nn possible sequences, which is the

total number of possible sequences. Instead, for the optimal information release there are only

n possible releases we need to consider, in which, only the “threshold” beyond which signals are

released jointly differs. The same “threshold” logic holds for the pessimal sequence. Thus, the

problem of finding the optimal and pessimal information release sequence greatly reduces from one

searching through nn possible sequences, to one searching through 2n possible sequences. Which

sequence turns out to be optimal and pessimal is determined by the realization of the signals.

We can now revisit the example in 3.1 and see what the highest and the lowest attainable

consensuses would be. Any other consensus arising from any other information release timing

would fall in-between these boundaries. For that specific example the highest consensus would be

attained if signals were released sequentially, from lowest to highest, yielding a consensus of 6.17.

The lowest consensus would have been attained by releasing the highest signal first, followed by all

three signals in the second information release round, yielding a consensus of 5.42. Recall that the

consensuses found in 3.1 were 5.54 under the joint release and 6.10 in the two period release.
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Figure 2: Upper and Lower bound Example

5.42

5.54 6.10

6.17

As can be seen, the consensus arising from the joint release, as well as the consensus arising

from the two round release, both fall within the identified bounds. Neither of these sequences was

optimal or pessimal, and consequently, the resulting consensuses is strictly within the bounds.

While in this section, for tractability purposes, we have assumed that after each round of

information release communication takes place until a new consensus is reached, this is not necessary

for the identified information release sequences to remain optimal/pessimal. This is made clear in

the proposition below.

Proposition 4 (Communication Rounds). Let r represent the rounds of communication between

information release rounds. Then ∃ r̃ : if r > r̃ the identi�ed sequences leading to the extreme

consensuses remain unchanged.

Proposition 4 states that there always exists some r̃ such that if communication takes place for

at least r̃ rounds between each round of information release, the optimal and pessimal information

release sequences identified earlier, remain optimal and pessimal. That is, “enough” communication

suffices, and consequently convergence of beliefs between information release rounds is not necessary

for the identified sequences to generate the extreme consensuses.

3.3 A Large Society with Limited Information Release Rounds

In the analysis above we assumed that we may have as many information release rounds as needed.

This is likely to be the case in small networks, since we only need a few rounds to accommodate

the sequential release of the signals associated with each agent. However, in a large society with a

high number of agents, it becomes likely that the number of signals far outweighs the number of

information release rounds. In this section, we study properties of the sequences that lead to the

highest and lowest attainable consensuses in a large society.
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A large society is captured by a sequence of networks where the number of agents n grows.

Specifically, (M(n))∞n=1 represents a sequence of n-by-n interaction matrices indexed by n, the

number of agents in each network. As we are interested in analyzing where the final beliefs of the

group converge, we maintain the assumption that each matrix is strongly connected and aperiodic.

Let (π(n))∞n=1 represent a sequence of influence vectors associated with each network n. We impose

the following assumption

max
i∈{1,...,n}

πi(n)→ 0 as n→∞

That is, as the network grows, the influence of the most influential agent goes to 0. This ensures

that no agent is disproportionately influential. Furthermore, let (λ(n))∞n=1 be a sequence of vectors,

representing the weights that agents place on their private signals. To ensure a nontrivial problem

we assume that 1
n

∑n
i=1 λi(n) is bounded away from 0 for all n. Finally let si(n) represent a sequence

of signals associated with agent i in network n.

Proposition 5 (Optimal Information Sequence with Limited Rounds). Let γ̄ represent the optimal

information release sequence that yields the highest attainable consensus. Furthermore, let γ(k)

represent the set of agents for whom information arrives in information round k. Then

max
i∈γ(k)

si < min
i∈γ(k+1)

si

That is, under the optimal information release sequence, the highest value signal released in

information round k must be lower than the lowest value signal released in information round k+1.

Hence, the feature of the optimal structure identified with no limits on information rounds, namely,

that signals are released in a non-decreasing fashion, prevails in a large society even with limited

information release rounds.

The proof of the above proposition relies on showing that as the number of agents n increases,

the final consensus from a sequence that releases a group of signals whose values are larger than

another group of signals, but whose release round is earlier than the later group, can be increased by

swapping the release date of these groups. As n increases, the added granularity makes it possible

to select sub-groups such that the swap has no impact on the discounting of all other signals,
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leading to an unambiguous increase in the final consensus. Then, if such a swap is beneficial for

any sequence, it can not be that there is space for such a swap in the optimal information release

sequence. Implying that under the optimal information release round, signals are released in a

monotonic fashion.

3.4 Influence and Sequence Susceptibility

We now analyze features of groups that affect their susceptibility to the sequencing of information

arrival. In particular, we study conditions that maximize the expected gap between the highest

attainable consensus, C(π, λ, s), and the lowest attainable consensus C(π, λ, s). Where π, λ and s,

represent the influence vector, the vectors of weights agents place on their signals, and the agents’

signals respectively. Let θ̃, the state of interest, be a random variable drawn from distribution G

with mean c(0). Let signals si be i.i.d random variables drawn from a distribution F with mean θ,

the realized state. Let λi be a i.i.d random variable with distribution H on [0, 1].

Proposition 6 (Influence and Sequence Susceptibility). Let C(π, λ, s) and C(π, λ, s) represent the

highest and lowest attainable consensus respectively. The expected gap E
[
C(π, λ, s)− C(π, λ, s)

]
is

maximized for a in
uence vector π with uniform in
uences πi = 1
N ∀ i, where N is the number of

agents. As the in
uence concentrates towards an opinion dictator, maxi πi → 1, the gap shrinks to

0.

Proposition 6 states that groups that are most susceptible to the different sequencing of in-

formation arrival are those in which each member has identical influence. To see why this is the

case, recall that in the final consensus the weight of each signal, among other things, depends on

the influence of the agent who receives it, and is discounted based on the influence of the agents

receiving signals in later rounds. By having uniform weight across all agents, when constructing

the optimal and pessimal information sequence, there are numerous configurations to choose from.

Consequently, in expectation, reshuffling the signal release timing leads to substantial variation in

the final consensus, leading to a wide gap between the highest and lowest attainable consensus.

On the other hand, when each entry of π is not identical, it is not clear which πi value will be

associated with which realized signal. Although the π values are fixed while signals are random,

realizing that the optimal/pessimal information release sequence releases information in a mono-
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tonic fashion, leads to an alternative interpretation, in which, the order statistics of the signals are

considered fixed, whereas there is variation with regard to which πi value will be associated with

which order statistic. It turns out that this variation does not benefit the signals released in the

last round, while boosting the weight of all previously released signals. Consequently, the potency

to generate a high/low final consensus shrinks, leading to a decrease in the expected gap.

In the extreme case, when maxi πi = 1, all sequences result in the same final consensus, as now,

there is an “opinion dictator”. If maxi πi = 1, the sequence of information arrival no longer plays a

role. Whenever the agent with πi = 1 receives her signal, be it immediately, slightly later, or much

later, the beliefs of the whole group converge to the beliefs of this agent. Since no other agent has

influence, even if other agents receive signals afterwards, the weigh of the “opinion dictator” is not

discounted, and thus, the newly found consensus remains unchanged.

4 The Wisdom of Crowds under Sequential Information Arrival

This section analyzes whether wisdom, a concept to be formalized below, persists when information

arrives sequentially. The finding behind the wisdom of crowds, as introduced and analyzed in

Golub and Jackson (2010), is that, in a society in which agents assign fixed weights on each other’s

opinions—in a society in which learning takes place as in the DeGroot fashion—under relatively

weak conditions beliefs converge to the correct state. This is a rather important result, as it suggests

that society as a whole does not need to act optimally for information to be aggregated desirably;

rather, by relying on the numerous sources of information, even with an imperfect information

aggregation process, the final beliefs converge to the truth. The focus of this section is to analyze

whether this result persists when information arrives sequentially.

4.1 The Wisdom of Crowds

We begin by defining the wisdom of crowds, as introduced in Golub and Jackson (2010). As we

specified in Section 3.3, let (M(n))∞n=1 represents a sequence of n-by-n interaction matrices indexed

by n, the number of agents in each network. We maintain the assumption that each network is

convergent. There is a true state of nature, θ ∈ [0, 1]. At time t = 0, each agent i has an initial

belief bi,0(n) ∈ [0, 1]. These beliefs are assumed to be drawn independently from a distribution
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with variance σ2 > 0.11 One of the main assumptions made in this paper is that the distribution

of these beliefs has mean equal to θ. For any given n and realization of beliefs b0(n), the belief of

agent i in network n approaches a limit denoted by bi,∞(n). Since these limiting beliefs depend on

the realization of the initial beliefs, each limiting belief itself is a random variable. The sequence

(M(n))∞n=1 is wise if

plim
n→∞

max
i≤n
|bi,∞(n)− θ| = 0

That is, a society is considered wise if as n increases, the final beliefs converge in probability to the

realized value θ. Note that since the assumption that each matrix is convergent is maintained, we

have

bi,∞(n) =
n∑
j=1

πj(n)bj,0(n)

Where πj(n) represents the influence of agent j in network n, the j’th value in the left eigenvector

with eigenvalue equal to 1 of matrix M(n).

Proposition 2 in Golub and Jackson (2010)

If (M(n))∞n=1 is a sequence of convergent stochastic matrices, then it is wise if and only if the

associated in
uence vectors are such that maxi≤n πi(n)→ 0 as n→∞.

The intuition of the result above is as follows. If the influence of the most influential agent

shrinks to 0 as the number of agents grows, then, the idiosyncratic error associated with each

agent washes away, and thus, the consensus converges to the mean of the beliefs, which is θ. As

highlighted above, on key assumption is that the initial beliefs are drawn from a distribution with

mean θ. If we think that agent’s initial beliefs are formed by some signals they receive with regard

to the realized value θ, for the agents to fully follow these signals, it must be that their prior on θ is

diffused; otherwise, their beliefs at time t = 1, their optimal guesses, would lie between the signal

they received and the mean of the prior distribution of θ.

In the sequential model studied thus far we have explicitly introduced a prior, which plays a

11The results follow even when each signal is drawn from a different distribution, as long as the support of each
signal is bounded.
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key role in determining agents’ beliefs. Modifying the model so as to get rid of the prior raises the

issue of handling belief updating when facing agents whose beliefs are an empty set, these would

be the agents who do not receive a signal in the first round. Banerjee et al. (2019) study a setup

in which all information arrives in the first round, however, not all agents receive a signal. They

propose a learning rule when the beliefs of some agents are an empty set. We study some of the

main takeaways of the model below, as they will become relevant when studying the wisdom of

crowds in a sequential information arrival setting.

4.2 Alternative Specification: A Prior-less Model

Generalized DeGroot Model Banerjee et al. (2019) builds on the DeGroot model by intro-

ducing uninformed agents. Within this setup, at any point in time t an agent is either informed or

uninformed. An informed agent at time t holds belief bi,t ∈ R, while an uninformed agent holds

the empty belief bi,t = ∅. The initial opinions of informed agents are an unbiased signal of the true

state θ, drawn from some distribution F with finite variance:

bi,0 = θ + εi ε ∼ F (0, σ2)

At time t = 0, a subset of agents receive a signal, while the remaining agents never receive a signal.

All agents with which a node is linked are called neighbors of that node. Let the set J ti denote the

set of informed neighbors of agent i at time t. The authors specify, what they name the generalized

DeGroot updating as follows 12

bi,t+1 =


∅ if J ti = ∅∑

j∈Jt
i
bj,t

|Jti |
if J ti 6= ∅

Under this specification, agents who do not receive a signal are initially uninformed, until one of

their neighbours becomes informed; in which case, they adopt the belief of their neighbour. If more

than one neighbour is informed, agents average out these beliefs. One of the crucial assumptions

in this paper is that agents have an uninformative prior on θ. That is, if an agent does not receive

a signal, their beliefs are an empty set, and if an agent receives a signal, their belief is set equal to

12As discussed in Banerjee et al. (2019), the results generalize to non-uniform weighting.
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this signal. Again, this would correspond to a case in which the prior is diffused, or in other words,

the private signals are infinitely more informative than the prior; leading agents to fully adopt their

signal as their guess once they receive a signal.

The authors find that when there are uninformed agents, even if maxi πi(n) → 0 as n → ∞

wisdom may fail, and consequently, beliefs may converge away from the mean of the signals received

by the informed agents. However, for lattice graphs with shortcuts, even if information is sparse,

the authors find that wisdom prevails; and as such, the final beliefs of the society converge in

probability to the mean of the signals the agents receive.13 In what follows, we will assume that

the network structure satisfies this condition, and thus, wisdom does not fail as a result of signal

sparsity in the first information arrival round.

Prior-less Sequential Information Arrival We can adapt this specification in the sequential

setup. That is, we assume that the initial prior agents have on θ is uninformative. Consequently,

we assume that for agents who do not receive a signal in the first information round, their beliefs

are an empty set b
(1)
i,0 = ∅ if i 6∈ γ(1) and b

(1)
i,0 = si if they receive a signal, i ∈ γ(1). To accommodate

this, in our initial setup we must modify the weights agents place on their own signal. Specifically,

let λ̃i represent the original weight participant i places on their signal. We modify the new weight

as follows

λi =

 λ̃i if γ̃i 6= 1

1 if γ̃i = 1

That is, when participants receive a private signal in the first round, since they have no prior, they

set their beliefs equal to the signal they received. After the first set of signals are released, beliefs

update as in the generalized DeGroot model, that is, participants pay attention only to informed

neighbours.

bi,t+1 =


∅ if J ti = ∅∑

j∈Jt
i
mi,jbj,t∑

j∈Jt
i
mi,j

if J ti 6= ∅

13For more details and a formal definition of lattice graphs with shortcuts, see Banerjee et al. (2019).

25



After the first round of information release, and after communication takes place, there will no

longer be any agents whose beliefs are an empty set. Thus, after the first round of information

release and communication takes place, the dynamics under this new specification becomes identical

to the dynamics in the initial model. With the difference being that the consensus reached after

the first round is a convex combination only of signals released in information round 1, excluding

the prior.

4.3 Persistence and Failure of Wisdom

Having defined the concept of wisdom, we now turn to analyze conditions and specifications under

which wisdom persist when information arrives sequentially. With regard to the evolution of beliefs,

we will consider both the initial specification, in which participants have a prior about θ, as well

as the prior-less specification, which models the evolution of beliefs in the absence of a prior.

Furthermore, with regard to the information release rule, we will consider two cases. An information

release rule that maps signals to information release rounds without conditioning on the signal

realization, as well as an information rule that conditions on signal realization when assigning

signals to information release rounds.

Let θ̃, the state of interest, be a random variable drawn from a non-atomic distribution G on

[0, 1]. Let E[θ̃] = c(0) be the mean of the distribution. Furthermore let θ represent the realized value

of θ̃. Associated with each agent i in matrix n is a signal si(n) ∈ [0, 1] drawn from a distribution

F with variance σ2 and mean θ. Let the weight the agent places on her own signal λi(n) ∈ [0, 1]

be drawn from a distribution G with variance σ2
λ and mean λ̄. There exists a rule γ that maps

information release rounds {1, 2, . . . , k} to agents {1, 2, . . . , n} for whom information arrives in that

rounds. In particular γ(n)[k] represents the group of agents for whom information arrives in infor-

mation round k in network n. We may assume that this rule assigns nodes to different information

release rounds independently of the realized signal si(n). In this case, we assume that the rule

specifies probabilities w̃1, w̃2, . . . , w̃k such that
∑k

i=1 w̃i = 1; where w̃j represents the probability

that an agent will receive their signal in information round j.
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Alternatively, we also consider a case in which the the mapping depends on the realized signals.

In this case we assume that i(n) ∈ γ(n)[j] if si(n) ∈ Sj ; where ∪kj=1Sj = [0, 1] and Sj ∩ Si = ∅.

That is, agent i receives her signal in information round j, if her signal falls within the Sj partition.

We let Sk be an element of a measurable partitions of the set of values that a signal can take, such

that the intersection of each element is empty and the union of all elements is equal to the whole

set. Define the following

wk =

∫
1{x ∈ Sk}f(x)dx µk =

∫
x1{x ∈ Sk}f(x)dx

wk
= E[s|s ∈ Sk]

Where wk represents the mass of signals released in round k, while µk represents their conditional

expectation. Recall from the law of iterated expectations that the proper way to “stitch” together

the conditional expectations so as to retrieve the unconditional expectation is θ =
∑k

i=1wkµk; that

is, we take a convex combination of the conditional expectations with weights equal to the mass of

the signal within the partitions.

Initial model with Conditioning Under the initial model and a rule that conditions on signal

realization, the limiting beliefs are

plim
n→∞

c(K) =
K∑
j=1

 K∏
k=j+1

(
1− wkλ̄

)wj λ̄µj +
K∏
j=1

(
1− wj λ̄

)
c(0) 6= θ

Where wj represents the mass of signals released in information round j, λ̄ the average weight

agents place on their signal and µj , the expected value of signals released in information round

j. The above expression differs from θ for two reasons. First, the weights associated with the

conditional expectations are a distorted version of the weights prescribed by the law of iterated

expectations. Second, the mean of the prior c(0) appears on the final consensus, thus, beliefs are

pulled towards this value.14

In cases with limited information, having a prior helps create a more efficient estimate of the

realized state, especially if the prior is much more informative than a single signal. However, when

14Note that c(0) shows up in the final beliefs even if all agents had λi = 1. Under this condition, only under a joint
release of all signals in the first round would wisdom prevail.
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the total available information is abundant, and sufficient for the realized state to be fully revealed,

the impact of the prior optimally washes away. Yet, in the current setting, since each agent places

some weight on their prior, the prior affects the final consensus. Since for a non-atomic distribution

of θ̃, the probability that the realized value θ is equal to the mean of the prior is 0, the fact that

the mean of the prior does not wash away pulls final beliefs away from the optimal guess.

Initial model without Conditioning Under the initial model and a rule that does not condi-

tions on signal realization, the limiting beliefs are

plim
n→∞

c(K) =

1−
K∏
j=1

(
1− w̃j λ̄

) θ +
K∏
j=1

(
1− w̃j λ̄

)
c(0) 6= θ

In this case the weights on the signals continue to be distorted, yet, this distortion does not pull

away from the optimal guess, since the expected signal value within each information round is θ,

the unconditional mean of the signals. This comes as a result of the lack of conditioning on the

signal realization when assigning an information release round. However, as was the case in the

previous setting, the final beliefs do not converge to the realized value θ, as once more the mean

of the prior c(0) influences the final beliefs.15 Notice that this will be the case even if λi(n) = 1∀i

and n.

Prior-less Model with Conditioning We now consider the setup in which agents who do not

receive a signal in the first round have their beliefs equal to an empty set. After the first round of

information arrival beliefs are updated according to the GDG model. In all remaining information

rounds, since each agent will be informed, the belief dynamics become identical with that of the

initial model. We start by considering the case in which the information release rule conditions on

signal realizations. In this case, the limiting beliefs are

plim
n→∞

c(K) =
K∑
j=2

 K∏
k=j+1

(
1− wkλ̄

)wj λ̄µj +
K∏
j=2

(
1− wj λ̄

)
µ1 6= θ

15Only if the realized value θ was exactly equal to the mean of the distribution c(0) would beliefs have converged
to θ. However, this is a probability 0 event.
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What makes this case distinct from the previous ones is that the mean of the prior no longer

appears on the final beliefs. The limiting belief is now a convex combination of the conditional

means. However, the weights assigned with the conditional means are not wk, which following the

law of iterated expectations, would be the adequate weights. Since these weights are distorted,

generically the limiting beliefs will differ from θ.

Thus, even in cases in which agents may have non-informative priors—learning about a new

product, a new political candidate, etc.—in environments in which otherwise their beliefs would

converge to the truth, if information is released sequentially their beliefs may nonetheless still

converge away from the truth. What causes wisdom to fail in this case is the distorted weights that

signals receive depending on the timing of their arrival. Since the weight signals receive depends

on the timing of their release, if there is any correlation between the value of the signals, and the

round at which they are released, the final beliefs converge away from the truth.

Prior-less model without Conditioning Finally, once again we consider a setup in which

agents who do not receive a signal in the first round have their beliefs set to an empty set. Once

again, after the first round of information arrival beliefs are updated according to the GDG model.

In all remaining information rounds, since each agent will be informed, the belief dynamics become

identical with that of the initial model. We now consider the case in which the information release

rule does not conditions on signal realizations. In this case, the limiting beliefs are

plim
n→∞

c(K) =
K∑
j=2

 K∏
k=j+1

(
1− w̃kλ̄

) w̃j λ̄θ +

K∏
j=2

(
1− w̃j λ̄

)
θ = θ

Once more, the prior no longer appears on the final beliefs. Furthermore, since the information

release rule does not condition on signal realization, each conditional mean is equal to the uncon-

ditional mean of the signals. Although the weights associated with the signals released in different

rounds are distorted, the convex combinations are simply mixtures of the unconditional expectation

θ. Consequently, final beliefs are equal to the realized value θ. Hence, in the setup in which agents

have an uninformative prior, and there is no correlation between the information release round and

the signal realizations, wisdom persists.
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We summarize these results in the proposition below.

Proposition 7 (The Persistence and Failure of Wisdom).

Initial Model Prior-less Model

Conditioning on si Wisdom Fails Wisdom Fails

Not conditioning on si Wisdom Fails Wisdom Persists

Table 1: The persistence and failure of wisdom

Thus, within this setup, when agents have an informative prior, by affecting the initial guesses

of these agents, the prior distort the final beliefs. Consequently final beliefs do not converge to the

realized value θ. In addition, under sequential information arrival, an adequate weighting of the

conditional means, as prescribed by the law of iterated expectations, can not be maintained. The

only way around this is for each one of the conditional means to be equal to the unconditional mean,

which happens when the rule that determines the information release rounds does not depend on

signal realization.

In sum, this set of findings reveal that once we consider an environment with sequential in-

formation arrival, the ability to adequately aggregate information is compromised, in all but very

specific cases wisdom fails.

5 Conclusions

We extend the DeGroot model to allow for sequential information arrival. We show that the final

consensus formed within the group is affected by the information arrival sequence, even when the

information content is held constant. By identifying the optimal and pessimal information release

sequence that yields the highest and lowest attainable final consensus, we bound the variation

in the final consensus that can be attributed to the sequencing of information. Taking an ex-ante

approach, we find that the expected range between the highest and lowest attainable final consensus

is maximized when each group member has identical influence. We further analyze the robustness
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of the wisdom of crowds in a large society, where the number of agents grows. We find that, to

a large extent, wisdom fails when information arrives sequentially: in all but particular cases, the

beliefs of the group converge away from the truth, even as the number of agents grows arbitrarily

large.

All things considered, this work emphasizes that not only the information content but the

timing and order by which this information arrives play a role in determining the final beliefs

formed via social learning. This would not be the case under optimal Bayesian learning. However,

in our setting, Bayesian updating would require an immense amount of computational power.

Consequently, we expect individuals to rely on heuristics for aggregating information. Indeed,

experimental evidence from a companion paper, Reshidi (2020), reveals that the timing and order

of information arrival affect the final beliefs formed by groups. Furthermore, individuals update

their beliefs following heuristics akin to those studied in this paper.
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6 Appendix

6.1 Proofs

Proof of Proposition 2.

For the final consensus c(K) to be independent of the information sequencing, generically, it must

be that the weight each signal has on the final consensus is unchanged regardless of the round

in which any signal is released. From Proposition 1 we know that after all information has been

released, the final consensus that emerges is.

c(K) =

K∑
k=1

 K∏
z=k+1

1−
∑
j∈γ(z)

πjλ
(z)
j

 ∑
i∈γ(k)

πiλ
(k)
i si +

K∏
k=1

1−
∑
j∈γ(k)

πjλ
(k)
j

 c(0)

Where in the above expression we have replaced λi with λ
(k)
i , thus allowing for agents to place

different weights on their signals based on when they receive the signals. Consider changing the

release timing of a subset of signals G that would otherwise arrive in round g, with
∑

i∈G πiλ
(g)
i > 0.

As long as λ
(k)
i is not equal to 0 for all i and k, finding such a group is always possible. Denote

λ̃i = λ
(g)
i . To ensure that a change of the release timing does not change the weight that these

signals have on the final consensus, it must be that for all i ∈ G:

λ
(k)
i =



λ̃i

(1−
∑
i∈γ(g)\G πiλi(g))

∏q−1
l=1

(
1−
∑
i∈γ(g−l) πiλ

(g−l)
i

) if k = g − q

...
...

λ̃i
(1−

∑
i∈γ(g)\G πiλi(g))

if k = g − 1

λ̃i if k = g(
1−

∑
i∈γ(g+1) πiλ

(g+1)
i

)
λ̃i if k = g + 1

...
...∏q

l=1

(
1−

∑
i∈γ(g+l) πiλ

(g+l)
i

)
λ̃i if k = g + q

This is the only specification of λ
(k)
i for agents i ∈ G which ensures that the weight these signals

command on the final consensus does not change as we change their information release round.

Now consider changing the information release round of signals in G, from g to g− q. A similar

argument would follow if we changed the release round to g + q. The above specification of λ
(k)
i

ensures that signals in G command the same weight as before. However, by changing the release

round of signals in G, the discounting of all signals in rounds {1, 2, . . . , g − 1} changes, while the

weights λ
(k)
i remain unchanged for all i 6∈ G since their release round did not change. In particular,

the weight of signals released in rounds {g − q, g − q + 1, . . . , g − 1} strictly increases. Concretely,

for a signal r released in round z, where g − q ≤ z < g the weight on the final consensus changes
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from

∏
{j>z}\g

1−
∑
i∈γ(j)

πiλ
(j)
i

1−
∑
i∈γ(g)

πiλ
(g)
i

πrλ
(z)
r

to

∏
{j>z}\g

1−
∑
i∈γ(j)

πiλ
(j)
i

1−
∑

i∈γ(g)\G

πiλ
(g)
i

πrλ
(z)
r

Which is strictly larger since
∑

i∈G πiλ
(g)
i ≥ 0. Since the weight on at least a subset of signals

changes, generically, the final consensus is altered.

Proof of Proposition 3.

Lemma 1. Given n signals, the optimal sequence can not have sj released individually in infor-

mation release round k and si released individually in information release round k + 1 if si < sj.

Proof of Lemma 1.

Two Signal Case

Let πi represent the i’th value of the left eigenvector of the network matrix M . Let c(0) represent

the initial consensus, and let λi represent the weight that agent i places on her signal. Releasing

only signal si in the first information release round leads to the new consensus c(1) = πiλisi + (1−
πiλi)c

(0). Afterwards, releasing sj in the second information release round leads to the following

final consensus

c(2) = πjλjsj + (1− πjλj)πiλisi + (1− πjλj)(1− πiλi)c(0)

Denote by c̃(2) the alternative final consensus reached by swapping the release time of signal si and

sj . The difference between the final consensuses will be c(2) − c̃(2) = λiπiλjπj(sj − si), which is

positive as long as sj > si. Thus, given two signals and an initial consensus c(0) it is never optimal

to release si after sj if si < sj .

General Case

Assume by contradiction that the optimal sequence has signal sj released in information release

round k and si released in k+1 while si < sj . Notice that regardless of what the information release

sequence from k+ 2 and onward is, the final consensus will be a weighted average of the consensus

c(k+1) and the signals released at k + 2 and onward. Holding fixed the sequence of information

arrival before k and after k + 1, the problem of maximizing c(k+1) by choosing when to release si

and sj reduces to the optimization problem with two signals. From the results in the Two Signal

Case, we know that the value of c(k+1) can be increased by releasing si before sj , thus violating

the claim that the initial sequence was optimal. This concludes the proof of Lemma 1.
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Splitting Information Sets

Consider a set J ⊆ γ(k) of agents for whom information arrives in information round k. The effect

of releasing the signals of these agents one information period earlier without joining any other set

of agents (or equivalently, the effect of releasing the signals for all agents in γ(k) \ J and all agents

in γ(k′) for all k′ > k one period later) would shift the final consensus from

c(K) =
K∑

v=k+1

K∏
z=v+1

1−
∑
j∈γ(z)

πjλj

 ∑
i∈γ(v)

πiλisi +

 K∏
z=k+1

1−
∑
j∈γ(z)

πiλi

 ∑
i∈γ(k)

πiλisi

+

 T∏
z=k+1

1−
∑
j∈γ(z)

πjλj

1−
∑
i∈γ(k)

πiλi

 c(k−1)

To the new final consensus c′T

c̃(K) =
K∑

v=k+1

K∏
z=v+1

1−
∑
j∈γ(z)

πjλj

 ∑
i∈γ(v)

πiλisi +

 K∏
z=k+1

1−
∑
j∈γ(z)

πiλi

 ∑
i∈γ(k)\J

πiλisi

+

 K∏
z=k+1

1−
∑
j∈γ(z)

πiλi

1−
∑

i∈γ(k)\J

πiλi

∑
i∈J

πiλisi

+

 T∏
z=k+1

1−
∑
j∈γ(z)

πjλj

1−
∑

i∈γ(k)\J

πiλi

(1−
∑
i∈J

πiλi

)
c(k−1)

First, note that the weights on all other signals released at or after k remain unaffected. Second, the

weight that signals of agents in set J have on the finl consensus is lower under c̃(K). Furthermore,

since
∑N

i=1 πi = 1 and λi ≤ 1 ∀ i, it is clear that 0 < 1−
∑

i∈γ(k)\J πiλi < 1, as long as all signals

are not released in information round k and the set J does not consist of all the agents for whom

information initially arrived in round k. Hence, this shift decreases the weight that signals of agents

in set J have on the final consensus. To see that this swap increases the weight on c(k−1) note that:1−
∑

i∈γ(k)\J

πiλi

(1−
∑
i∈J

πiλi

)
= 1−

∑
i∈γ(k)

πiλi +

 ∑
i∈γ(k)\J

πiλi

(∑
i∈J

πiλi

)

As long as J is not an empty set or does not contain all elements in γ(k):1−
∑
i∈γ(k)

πiλi

 <

1−
∑

i∈γ(k)\J

πiλi

(1−
∑
i∈J

πiλi

)

Furthermore, note that the increased weight of consensus c(k−1) is exactly equal to the decreased

weight on signals in J . Then, the total impact of such a shift is:
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• The weights on the final consensus of signals released in information round k that are not

shifted, as well as all signals released after information round k, are unaffected.

• The weights on the final consensus of signals in set J is decreases.

• The weights on the final consensus of c(k−1), or equivalently, the weights on the final consensus

of all signals released before information round k including the initial consensus c(0) increases.

Merging Information Sets

Consider the set γ(k) of agents for whom information arrives in information round k. The effect

of releasing the signals of these agents one information release round earlier by joining a group of

agents for whom information arrives one information round earlier, would shift the final consensus

from

c(K) =
K∑

v=k+1

K∏
z=v+1

1−
∑
j∈γ(z)

πjλj

 ∑
i∈γ(v)

πiλisi +

 K∏
z=k+1

1−
∑
j∈γ(z)

πiλi

 ∑
i∈γ(k)

πiλisi

+

 T∏
z=k+1

1−
∑
j∈γ(z)

πjλj

1−
∑
i∈γ(k)

πiλi

 ∑
j∈γ(k−1)

πjλjsj

+

 T∏
z=k+1

1−
∑
j∈γ(z)

πjλj

1−
∑
i∈γ(k)

πiλi

1−
∑

j∈γ(k−1)

πjλj

 c(k−2)

To the new final consensus c̃(K):

c̃(K) =
K∑

v=k+1

K∏
z=v+1

1−
∑
j∈γ(z)

πjλj

 ∑
i∈γ(v)

πiλisi

+

 T∏
z=k+1

1−
∑
j∈γ(z)

πjλj

 ∑
j∈γ(k−1)∪γ(k)

πjλjsj

+

 T∏
z=k+1

1−
∑
j∈γ(z)

πjλj

1−
∑

j∈γ(k−1)∪γ(k)

πjλj

 c(k−2)

This shift does not affect the weight on the signals in set γ(k), it increase the weight on the signals

in set γ(k − 1) and decreases the weight on the consensus ct−2. To see the later, note that1−
∑
i∈γ(k)

πiλi

1−
∑

i∈γ(k−1)

πiλi

 = 1−
∑

i∈γ(k)∪γ(k−1)

πiλi +

 ∑
i∈γ(k)

πiλi

 ∑
i∈γ(k−1)

πiλi


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Hence, as long as γ(k) and γ(t− 1) are not empty:1−
∑

i∈γ(k)∪γ(k−1)

πiλi

 <

1−
∑
i∈γ(k)

πiλi

1−
∑

i∈γ(k−1)

πiλi


The weights on all other signals released after t remain unaffected. Furthermore, note that the

increased weight of signals in γ(k− 1)is exactly equal to the decreased weight the consensus c(k−2).

Then, the total impact of such a shift is:

• The weights on the final consensus of signals released after information round k are unaffected.

• The weights on the final consensus of signals originally released in information round k are

unaffected.

• The weights on the final consensus of signals originally released in information round k − 1

increases.

• The weight on the consensus c(k−2), or equivalently, the weight on all signals released before

information round k − 1, including here the initial consensus c(0) decreases.

Knowing the effect that Splitting Information Sets and Merging Information Sets has, al-

lows us to know the effect that any relevant reshuffling of signals has. For example, if a set J leaves

a group of agents for whom signals are released in information release round k, and are merged

with a group of agents for whom signals are released at information round k − 1, the effect will be

the joint effect of Splitting Information Sets and Merging Information Sets. If the timing

of information arrival changes from k to k + 1 for a set of J agents, with no other agents receiving

signals in round k, the total effect will simply be the opposite of Merging Information Sets,

and so on.

Possible Joint Releases

Assume that under the optimal information release sequence multiple signals are released in infor-

mation round k̂.

Then, it must be that all of the signals released in information round k̂ are greater than the

consensus c(k̂−1). Otherwise, if there was a signal si < c(k̂−1) with i ∈ γ(k̂), releasing it earlier

would increase the value of the final consensus c(K). To see why this would be the case, note that

if one of these signals were to be released earlier, via the Splitting Information Sets effect, the

weight it would lose would be exactly equal to the weight that the consensus at c(k̂−1) would gain.

Assume that a single signal, or a group of signals, are released after the joint release in k̂. Since

all signals released in k̂ must be greater than c(k̂−1), the signals released at k̂ + 1 can be merged

with the signals released at t̂, thus having a Merging Information Sets effect, boosting the

weight of the signals at k̂ and decreasing the weight of the consensus at c(k̂−1) by exactly the same

amount. This would lead to an increase of the final consensus, thus contradicting the optimality of

the information release sequence.
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Hence, in the optimal information release sequence a group release of signals can only occur in

the final information release round. Furthermore, all signals released in this round must be greater

than the previous consensus.

Constructing the Optimal Information Release Sequence

From Possible Joint Releases we know that the optimal sequence either has no joint release of

signals, or if it does, it can have at most one joint release which must occur at the last information

release round K. Thus, γ(k) for all k ∈ {1, . . . ,K − 1} must be singletons. From Lemma 1 we

know that whenever there are singleton releases, the signal si released in information round k must

be larger than the signal sj released in k− 1. This implies that for any i ∈ {1, . . . ,K − 1} and any

j ∈ {1, . . . ,K − 1} if si < sj then si is released earlier than sj .

Without loss of generality assume that si < sj if i < j. To construct the optimal information

release sequence we can initially associate each signal si with in information round i. Afterwards we

can see if there is a benefit of having sK jointly released with sK−1. This merging will be optimal

only if sK−1 > c(K−2). If this is not the case, it must be that the optimal sequence is to release all

signals one after the other, from lowest to highest. If however, having sK be released the same time

with sK−1 is optimal, we can continue this process by evaluating if having sK and sK−1 released

jointly with sK−2 improves the final consensus. This will be the case if sK−2 > c(K−3). Continuing

in this fashion, possibly joining the group release in the last information arrival round with the last

signal released individually until the last singleton sk < ck−1 constructs the optimal information

release sequence.

Proof of Corollary 1.

Corollary 1 follows from the proof of Proposition 3 and symmetry.

Proof of proposition Proposition 4.

Once more, let the vector representing beliefs immediately after information arrival be denoted by

b̃(k), while the vector representing beliefs after communication takes place be denoted by b̂(k). Let

γ(k) be a predetermined set of nodes who’s signals will be released in round k. That is γ : N→ N

represents a mapping from natural numbers, representing rounds, to the set of agents. When there

were enough rounds of communication for convergence to take place, the latter beliefs were equal

to b̂(k) = M∞b̃(k). We now replace M∞ with M r representing r rounds of communication between

information release. Define the beginning of the period beliefs c̃t as follows:

b̃
(k)
i =

{
(1− λi) b̂(k−1)

i + λisi if i ∈ γ(t)

b̂
(k−1)
i if i 6∈ γ(t)

Where the difference from (2) is that we no longer assume a consensus has been reached. Note that

b̃
(k)
i is continuous in all it of it’s components. Specifically, a small change in b̂

(k−1)
i leads to a small
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change in b̃
(k)
i . We can express the end of communication beliefs of agent i as

b̂
(k)
i =

∑
j

[M r]ij b̃
(k)
j

Where [M r]ij represents the entry in row i and column j of matrix M r. Note that b̂
(k)
i as a function

of these entries, is continuous in each [M r]ij coefficient, as well as in b̃
(k)
j . Consider the diagonal

decomposition of matrix M

M r = Π−1Λ̃rΠ

Where Λ̃ is a diagonal matrix, with entry (i, j) equal to the i’th eigenvalue. While Π represents

the matrix of left hand eigenvectors of M 16. It then follows that

[M r]ij = πj +
∑
k≥2

λrkπ
−1
ik πkj

Since we can think of M as a transition matrix of an ergodic Markov chain we have λ1 = 1 ≥ λ2 · · · ≥
λn. Hence, the difference between [M r]ij and πj goes to 0 exponentially in r. Thus, for any given

ε̃ > 0, we can find a rε̃ large enough such that
∣∣ [M rε̃ ]ij − πj

∣∣ < ε for all (i, j). Consequently, given

some release sequence γ, a vector of weights agents place on their private signals λ, a vector of

initial beliefs b̃(0), and a network matrix M , for any given ε > 0, we can find a r̃ large enough such

that
∣∣cT (γ, r =∞)− cT (γ, r ≥ r̃)

∣∣ < ε. This follows from the continuity of b̃(k) and b̂(k), as well as

from the fact that M r converges to a constant stochastic matrix as r increases. Hence, given an

optimal release sequence γ∗ that maximized c(K) under r =∞ we had

c(K)(γ∗, r =∞) > c(K)(γ′, r =∞) ∀ γ′ 6= γ∗

Then, for r̃ large enough

c(K)(γ∗, r ≥ r̃) > c(K)(γ′, r ≥ r̃) ∀ γ′ 6= γ∗

Thus, although we identify the optimal release sequence for r = ∞, this release sequence will be

optimal for all cases in which r ≥ r̃, where the exact value of r̃ depends on the network structure.

Proof of proposition Proposition 5.

Associated with each agent i in matrix n is a signal si(n). For the purposes of this proof we

can assume that s(n) is a sequence of signals bounded within [0, 1]. Let γ be some rule mapping

{1, . . . ,K} information release rounds to the {1, . . . , n} agents. It could be that agents are dis-

tributed randomly in the K information rounds, it could be that which round they are associated

with depends on their signal realization, or any other mapping. In particular γ(n)[k] represents the

16See Jackson (2010) for further discussion and intuition behind the link between the speed of convergence and
eigenvalues.
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group of agents for whom information arrives in information round k in network n. Let ψ represent

the mapping from agents to information release rounds according to the aforementioned sequence.

Thus, ψ(n)[i] maps agents i ∈ {1, . . . , n} in network n, to the k ∈ {1, 2, . . . ,K} release rounds.

Define

s(n)[k] := min
i∈γ(n)[k]

si(n) s(n)[k] := max
i∈γ(n)[k]

si(n) r(n)[k] := {s(n)[k], s(n)[k]}

s(n)[k] and s(n)[k] represent the lowest and highest signal released in information round k for

network n respectively. While r(n)[k] represents the range of signals released in information round

k in network n. Further define

W̌ (n)[k, z] :=
∑

i∈γ(n)[k]:si(n)≤z

πi(n)λi(n) Ŵ (n)[j, z] :=
∑

i∈γ(n)[j]:si(n)>z

πi(n)λi(n)

W̌ (n)[k, z] and Ŵ (n)[j, z] represents the impact that signals released on information round k or j

in network n, with values lower than z and higher than z respectively, have. Where the impact

of a signal refers to the influence of the agent receiving it πi(n) multiplied by the value this agent

assigns to the signal λi(n).

W̄ (n)[k, j] := max
z(n)[k,j]∈[s(n)[k],s̄(n)[j]]

{
min

{
Ŵ (n)[j, z] , W̌ (n)[k, z]

}}
∀j < k, k ∈ {1, . . . ,K}

In network n, W̄ (n)[k, j] is equal to the impact that signals released in round k have, with signal

values lower than z∗(n)[k, j], or the impact that signals released in round j have, with signal values

larger than z∗(n)[k, j], where z∗(n)[k, j] is the argument that maximizes this value. Note that

z(n)[k, j] ∈ [s(n)[k], s̄(n)[j]], thus, we are interested in the value of signals that are lower than the

highest signal released in round j, but larger than the lowest signal released in round k.

W̄ (n) := max
j,k

W̄ (n)[k, j] ∀j < k, k ∈ {1, . . . ,K}

That is, W̄ (n) chooses among all pairings k and j, and chooses the ones for whom the impact

of the overlapping signals is the highest. Associated with W̄ (n) are j∗(n) and k∗(n), which are

the arguments the maximize the function above, as well as z∗(n) which is the argument that had

maximized W̄ (n)[k∗(n), j∗(n)]. Note that if W̄ (n) = 0 then released signals are all sorted, such

that the lowest signal released in round t must me larger than the highest signal of nodes released

in time t− 1. Define

Ǩ(n) := {i ∈ γ(n)[k∗(n)] : si(n) ≤ z∗(n)} K̂(n) := {i ∈ γ(n)[j∗(n)] : si(n) > z∗(n)}

For network n, K̂(n) and Ǩ(n) represent the set of agents whose signals are released in round

k∗(n) or j∗(n) respectively, with values smaller than or lower than z∗(n) respectively. Note that

since maxi∈{1,...,n} πi(n)→ 0 as n→∞, if #K̂(n) and #Ǩ(n) do not increase W̄ (n)→ 0. In what
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follows without loss of generality assume that Ŵ (n)[j∗(n), z∗(n)] ≤ W̌ (n)[k∗(n), z∗(n)].

K̃(n) :={
i : i ∈ arg min

{i}∈Ǩ(n)

{
Ŵ (n)[j∗(n), z∗(n)]−

∑
i πi(n)λi(n) if

∑
i πi(n)λi(n) ≤ Ŵ (n)[j∗(n), z∗(n)]

2 maxi πi(n) otherwise

}

Hence, K̃(n) is the subset of elements in Ǩ(n) whose influence most closely approximates the value

W̌ (n)[j∗(n), z∗(n)] from below. To see this, note that

4(n) := Ŵ (n)[j∗(n), z∗(n)]−
∑

i∈K̃(n)

πi(n)λi(n) ≤ max
i
πi(n)

If this was not the case, then K̃(n) would include at least one more element from Ǩ(n). Now,

consider the consequence of swapping the release time of elements in K̃(n) with those of elements

in K̂(n). Denote the initial final consensus as c(K)(n), and let this swap lead to the new final

consensus c̃(K)(n). Then we have

c̃(K) − c(K) =

−4(n)

 ∑
k∈γ(n)[k∗(n)]:k 6∈K̃(n)

πk(n)λk(n)−
∑

j∈γ(n)[j∗(n)]:j 6∈K̂(n)

πj(n)λj(n)


×

 ∏
m6∈{j∗(n),k∗(n)}

(
1−

∑
m

πm(n)λm(n)

) c(0)

−4(n)

 ∑
k∈γ(n)[k∗(n)]:k 6∈K̃(n)

πk(n)λk(n)−
∑

j∈γ(n)[j∗(n)]:j 6∈K̂(n)

πj(n)λj(n)


×

 ∑
r<j∗(n)

 ∏
m>r:m 6={j∗(n),k∗(n)}

(
1−

∑
m

πm(n)λm(n)

)∑
r

πr(n)λr(n)sr(n)


−4(n)

 ∑
j∗(n)<r<k∗(n)

 ∏
m>r:m 6=k∗(n)

(
1−

∑
m

πm(n)λm(n)

)∑
r

πr(n)λr(n)sr(n)


−4(n)

 ∏
m>j∗(n):m6=k∗(n)

(
1−

∑
m

πm(n)λm(n)

) ∑
j∈γ(n)[j∗(n)]

πj(n)λj(n)sj(n)

+

 ∑
j∈K̂(n)

πj(n)λj(n)sj(n)−
∑

k∈K̃(n)

πk(n)λk(n)sk(n)

 ∏
m>k∗(n)

(
1−

∑
m

πm(n)λm(n)

)
1−

 ∏
j∗(n)<m<k∗(n)

(
1−

∑
m

πm(n)λm(n)

)
1−

∑
v∈{K̂(n)∪γ(n)[k∗(n)]\K̃(n)}

πv(n)λv(n)



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All terms, besides the last, are multiplied by 4(n). All parts multiplying 4(n) are weighted convex

combinations of the prior and the signals, which lie in a bounded set, thus, they themselves are

bounded. Since 4(n) ≤ maxi πi(n), and since maxi πi(n) → 0 as n → ∞, all terms but the final

term converge to 0 as n → ∞. Focusing on the last term, since
∑n

i=1 πi(n) = 1 and since ∀ i
and ∀ n λi(n) ≤ 1, it is straightforward to see that the last three multiplicative parts are always

non-negative. While the following inequality holds for the first part of the last term∑
j∈K̂(n)

πj(n)λj(n)sj(n) >
∑

j∈K̂(n)

πj(n)λj(n)z∗(n) ≥
∑

j∈K̃(n)

πj(n)λj(n)z∗(n) ≥
∑

k∈K̃(n)

πk(n)λk(n)sk(n)

The first inequality follows from the definition of K̂(n), since each element in K̂(n) is larger than

z∗(n). The second inequality follows from the definition of K̃(n), since it approximates the influence

of signals in K̂(n) from below. The third inequality follows from the fact that each element in K̃(n)

is drawn from Ǩ(n). By definition, each signal associated with each element in the later set has

value lower than or equal to z∗(n). Hence, under the assumption that in the initial sequence

the intersection of the range of signals released in different periods is not empty, the last term is

bounded away from 0, which leads to

lim
n→∞

c̃(K)(n)− c(K)(n) > 0

Thus, as n → ∞, if there is overlap between signal values released in different rounds, the final

consensus can be increased by shifting signals with lower values to earlier information release rounds,

and shifting signals with higher values to later information release rounds. Since this improves the

final consensus for any sequence, it can not be that the optimal information release sequence has

overlapping signals.

Proof of proposition Proposition 6.

From Proposition 3 it follows that for any realization of signals, and weights participants place

on their signals, the optimal sequence is one of n possible sequences. These n sequences release

information in a monotonic manner, starting with the lowest signal. The difference between the

sequences is a round K ∈ {1, 2, . . . , n} after which the sequence releases all remaining signals

jointly. Since λi are independently drawn, and since each one enters linearly in the final consensus,

in expectation we can replace all λi with the mean of their distribution, denoted by λ̄. Since the

sequence being analyzed releases information monotonically, the expected value of signals released

in the first round is simply the first order statistic of the distribution of signals S(1). This follows

all the way to K, in which the last n −K signals are released, which in expectation are equal to

the S(K), S(K+1), . . . , S(n) order statistics of the distribution of signals. Then, the expected final

consensus for one of these sequences is
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E
[
c(K)(π, λ, s)

]
=E

1−
∑

i∈γ(K)

πiλi

K−1∑
k=1

(
K−1∏
z=k+1

(1− πzλz)

)
πkλksk

+
∑

k∈γ(K)

πkλksk +

1−
∑

i∈γ(K)

πiλi

K−1∏
z=1

(1− πzλz) c(0)


=E

1−
∑

i∈γ(K)

π̃iλ̄

K−1∑
k=1

(
K−1∏
z=k+1

(
1− π̃zλ̄

))
π̃k

 λ̄S(k)

+
n∑

k=K

E [π̃k] λ̄S(k) + E

1−
∑

i∈γ(K)

π̃iλi

K−1∏
z=1

(1− π̃zλz)

 c(0)

Where c(0), the initial consensus, represents the ex-ante mean of the distribution of the signals.

Although the influence values πi are deterministic, ex-ante we do not know which signal they will

be associated with. Thus, given a particular sequence, from an ex-ante point of view, after taking

expectations, the only remaining uncertainty is with regard to the πi values associated to each order

statistic. Hence, we can continue the analysis as if λi = λ̄ and the order statistics S(i) are fixed,

while the πi values vary. Let π = {π1, . . . , πn} represent the vector of influence values that can be

associated with the order statistics, and let π̃i represent the realized value associated with order

statistic i. That is, π̃i associated with order statistic i ∈ {1, 2 . . . , n}, are drawn from π uniformly

without replacement.

Consider the case in which K = n, and thus, one signal is released in each information round.

In all other n− 1 information release sequences, the analysis follows the same steps as the analysis

below; the only difference is that multiple higher order statistics are released in the last round,

making the effect further pronounced. Let p(πi) represent the probability that the realized value

of π̃n = πi. First, note that

p(πi) =
1

n
E[π̃n] =

n∑
i=1

p(πi)πi =
n∑
i=1

1

n
πi =

1

n

We have p(πi) = 1
n since each value is equally likely to be associated with the n’th order statistic.

As can be seen, the expected influence value associated with the signal released in the last round is

E [π̃n] = 1
n . Since the weight the nth order statistic has on the final consensus is E[π̃n]λ̄, whether

π = 1
n ∀ i, or whether there is variation in the values πi, in expectation, the weight signals released

in the last round receive is not affected. On the other hand, the weight associated with the n− 1

order statistic is

E
[
(1− π̃nλ̄)π̃n−1

]
λ̄ =

(
E [π̃n−1]− E [π̃nπ̃n−1] λ̄

)
λ̄ =

(
1

n
− E [π̃nπ̃n−1] λ̄

)
λ̄
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To calculate E [π̃nπ̃n−1] we define17

p(πi, πj) =

{
1

n(n−1) if πi 6= πj

0 if πi = πj

E[π̃nπ̃n−1] =
n∑
i=1

∑
j 6=i

p(πi, πj)πiπj =
n∑
i=1

∑
j 6=i

1

n(n− 1)
πiπj =

n∑
i=1

n∑
j=1

1

n(n− 1)
πiπj −

n∑
i=1

1

n(n− 1)
π2
i

=
1

n(n− 1)

n∑
i=1

πi

n∑
j=1

πj −
1

n(n− 1)

n∑
i=1

π2
i =

1

n(n− 1)
− 1

n(n− 1)

n∑
i=1

π2
i

Since π2
i is a convex function, and the condition

∑n
i=1 πi = 1 has to be satisfied,

∑n
i=1 π

2
i is

minimized when πi = 1
n ∀ i, and maximized when πi = 1 for some i and πj = 0 for all j 6= i. Hence,

E[π̃nπ̃n−1] ∈
[
0, 1

n2

]
, and so, the weight placed on the n − 1 order statistic is within

[
n−λ̄
n2 λ̄,

1
n λ̄
]
.

The weight placed on the n− 2 order statistic is

E
[
(1− π̃nλ̄)(1− π̃n−1λ̄)π̃n−2

]
λ̄ =

(
E [π̃n−2]− E [π̃nπ̃n−2] λ̄− E [π̃n−1π̃n−2] λ̄+ E [π̃nπ̃n−1π̃n−2] λ̄2

)
λ̄

To calculate E [π̃nπ̃n−1π̃n−2] we define

p(πi, πj , πk) =

{
1

n(n−1)(n−2) if πi 6= πj 6= πk

0 otherwise

E[π̃nπ̃n−1π̃n−2] =
n∑
i=1

∑
j 6=i

∑
k 6={i,j}

p(πi, πj , πk)πi =
n∑
i=1

∑
j 6=i

∑
k 6={i,j}

1

n(n− 1)(n− 2)
πiπjπk

=
n∑
i=1

n∑
j=1

n∑
k=1

1

n(n− 1)(n− 2)
πiπjπk −

1

n(n− 1)(n− 2)

(
3

n∑
i=1

π2
i − 2

n∑
i=1

π3
i

)

=
1

n(n− 1)(n− 2)
− 1

n(n− 1)(n− 2)

(
3

n∑
i=1

π2
i − 2

n∑
i=1

π3
i

)

Once more, the highest value
(
3
∑n

i=1 π
2
i − 2

∑n
i=1 π

3
i

)
= 1 is achieved when πi = 1 for some i and

πj = 0 ∀ j 6= i, while the lowest value
(
3
∑n

i=1 π
2
i − 2

∑n
i=1 π

3
i

)
= 3n−2

n2 is achieved when πi = 1
n

∀ i. Thus, E[π̃nπ̃n−1π̃n−2] ∈
[
0, 1

n3

]
, and so, the weight placed on the n− 1 order statistic is within[

(n−λ̄)2

n3 λ̄, 1
n λ̄
]
. It is straightforward to see that the additional weight gained by the n − 2 order

statistic is larger than that gained by the n − 1 order statistic. Continuing in this fashion we see

that the weight on the n−k order statistic will be within
[

(n−λ̄)k

nk+1 , 1
n λ̄
]
. With the weight of all order

17With a slight abuse of notation, πi 6= πj does not exclude the possibility that these values are equal. Rather, it
excludes the possibility of choosing the same πi for two different signals, which follows from the fact that we draw
without replacement.
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statistics lower than n minimized when πi = 1
n ∀ i, and being boosted towards 1

n λ̄ as maxi πi → 1.

Furthermore, it is also straightforward to see that the the additional weight pulls towards a convex

combination lower than the mean of the distribution. Naturally, the weight that each signal has

on the final consensus, including the weight of the prior, sums up to 1. The weight that the

prior has on the final consensus is E
[∏K

z=1 (1− π̃zλz)
]
, which is maximized when πi = 1

n ∀ n
and is minimized when πi = 1 with πj = 0 ∀ j 6= i. The additional weight gained by all order

statistics lower than n comes to the cost of the weight on the prior, which in expectation is equal

to the mean of the distribution. Thus, this transfer shifts weight from the mean, towards a convex

combination lower than the mean, and consequently decreases the final consensus. Since this weight

transfer decreases the final consensus for each one of the n information release sequences, it must

decrease the final consensus for the maximum of these sequences as well. Hence moving away from

πi = 1
n ∀ i to any other vector π decreases the value of E

[
C(π, λ, s)

]
, with it’s lowest value reached

when maxi πi → 1. When maxi πi = 1 the E
[
C(π, λ, s)

]
is equal to the unconditional expectation

of s. By symmetry E [C(π, λ, s)] is minimized with a uniform π vector, and consequently, the gap is

maximized. E [C(π, λ, s)] also collapses towards the unconditional expectation value as maxi πi → 1,

and consequently the gap shrinks to 0.

Proof of proposition Proposition 7.

Let ψ represent the mapping from agents to information release rounds according to the aforemen-

tioned rule. Thus, ψ(n)[i] maps agents i ∈ {1, . . . , n} in network n, to the k ∈ {1, 2, . . . ,K} release

rounds.

Initial Model with Signal Conditioning

When γ can not condition on signal realization, the rule amounts to choosing which share of signals

is released in which information round. If all signals were released in the first period

c(K) =
n∑
i=1

πi(n)λi(n)si(n) +

(
1−

n∑
i=1

πi(n)λi(n)

)
c(0)

Note that plimn→∞
∑n

i=1 π(n)λi(n) = λ̄. This follows from Lemma 1 in Golub and Jackson (2010).

We can define a new random variable, κi(n) = λi(n)si(n). Since λi(n) and si(n) are independent

E [κi(n)] = λ̄θ. Furthermore

V ar (κi(n)) = E[λi(n)2]E[si(n)2]− λ̄θ ≤ 1

The inequality holds since both λi(n) and si(n) are bounded within 0 and 1. Once more, from the

aformentioned lemma, it follows that plimn→∞
∑n

i=1 πi(n)λi(n)si(n) = λ̄θ. Which leads to

plim
n→∞

c(K) = λ̄θ + (1− λ̄)c(0)
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Thus, if all signals are released jointly at the very first round, if λi(n) = 1 ∀i, n, then wisdom would

prevail. That is, if agents fully listened to their signals, the prior would wash away, and since their

signals are centered around θ, the consensus would eventually converge there. Let Sk be an element

of a measurable partitions of the set of values that a signal can take, such that the intersection of

each element is empty and the union of all elements is equal to the whole set. Define the following

wk =

∫
1{x ∈ Sk}f(x)dx µk =

∫
x1{x ∈ Sk}f(x)dx

wk
= E[s|s ∈ Sk]

Further define

wj(n) =
∑

i∈γ(n)[j]

πi(n) π̃i(n) =
πi(n)

wψ(n)[i](n)

If signals are released sequentially then the final consensus will be

c(K) =
K∑
j=1

 K∏
k=j+1

1−
∑

i∈γ(n)[k]

πk(n)λk(n)

 ∑
i∈γ(n)[j]

πi(n)λi(n)si(n)

+
K∏
j=1

1−
∑

i∈γ(n)[j]

πi(n)λi(n)

 c(0)

Replacing πi(n) with π̃i(n) and realizing that wψ(n)[i](n) is the same for all i ∈ γ(n)[i], we can

rewrite the above as

c
(K)
T =

K∑
j=1

 K∏
k=j+1

1− wk(n)
∑

i∈γ(n)[k]

π̃k(n)λk(n)

wj(n)
∑

i∈γ(n)[j]

π̃i(n)λi(n)si(n)

+
K∏
j=1

1− wj(n)
∑

i∈γ(n)[j]

π̃i(n)λi(n)

 c(0)

First, note that plimn→∞wk(n) = wk. To see this, notice that
∑

i πi1i∈γ(i) is unbiased for wi. Then

P

[∣∣∣ n∑
i=1

πi1i∈γ(i) − wk
∣∣∣ > ε

]
≤
V ar

(∑n
i=1 πi1i∈γ(i)

)
ε2

=
V ar

(
1i∈γ(n)[k]

)∑n
i=1 π

2
i (n)

ε2

≤
V ar

(
1i∈γ(n)[k]

)
maxi≤n πi(n)

∑n
i=1 πi(n)

ε2
→ 0

Where the last part follows from the fact that V ar
(
1i∈γ(n)[k]

)
is bounded,

∑n
i=1 πi = 1 and

the assumption that maxi≤n πi → 0 as n → ∞. Then, having re-normalized π̃i(n), note that∑
i∈γ(n)[k] π̃i(n) = 1 while still maxi∈γ(n)[k] π̃i(n) → 0 as n → ∞. Once more, the aforementioned
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lemma implies that

plim
n→∞

∑
i∈γ(n)[k]

π̃i(n)λi(n) = λ̄ plim
n→∞

∑
i∈γ(n)[k]

π̃i(n)λi(n)si(n) = λ̄µk

Which leads to

plim
n→∞

c(K) =

K∑
j=1

 K∏
k=j+1

(
1− wkλ̄

)wj λ̄µj +

K∏
j=1

(
1− wj λ̄

)
c(0)

Even under the assumption that λi(n) = 1 ∀ i, the final consensus is not equal to θ. However

plimn→∞ c
(K) differs from θ for two reasons. First, even if λi = 1 ∀ i, c(0) crawls in and pulls

away from the actual realized value θ. Second, notice that a convex combination of the conditional

expectations µk with weights exactly equal to wk is equal to the unconditional expected value of

the signals E[si] =
∑K

i=1wkµk = θ, which follows from the law of iterated expectations. However,

in the expression above, these weights are distorted. In particular, the set of signals released earlier

receives weight
∑K

j=1

(∏K
k=j+1

(
1− wkλ̄

))
wj λ̄ ≤ wj .

Initial Model without Signal Conditioning

Assume now that the mapping between information rounds and signals does not depend on signal

realization. Then, the assignment rule reduces to choosing a probability wk with which signal

si(n) is released in information round k. Naturally
∑K

k=1wk = 1. We maintain the previous

definitions of wj(n) and π̃i(n). Following identical steps as above, it is straightforward to see that

the probability limit of
∑

i∈γ(n)[k] π̃i(n)λi(n) and si(n) = λ̄µk, and wk(n) remain unchanged; with

the only difference being that wk now represents the probability of being released in information

round k, which in the limit, corresponds to the share of signals released in round k. The main

difference from the previous specification is the following probability limit

plim
n→∞

∑
i∈γ(n)[k]

π̃i(n)λi(n)si(n) = λ̄θ

Which can be shown following the same steps as before. Since the release rule can not condition

on signal realization, µk = θ ∀ k. Which leads to

plim
n→∞

c(K) =

1−
K∏
j=1

(
1− wj λ̄

) θ +

K∏
j=1

(
1− wj λ̄

)
c(0)

In this case, the final beliefs do not converge to the realized value θ only because the mean of the

prior c(0) has crept in.18 Notice that this will be the case even if λi(n) = 1∀i and n.

18Only if the realized value θ was exactly equal to the mean of the distribution c(0) would beliefs have converged
to θ. However, this is a probability 0 event.
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Prior-less Model with Signal Conditioning

Adopting the GDG model implies that once the first round of signals is released, the prior is

completely washed away. From Theorem 2 in Banerjee et al. (2019) we know that for lattice

graphs with shortcuts, wisdom prevails.19 This implies that, the consensus reached after the first

set of signals is released converges in probability to the mean of these signals, plimn→∞ c
(1) = µ1, as

n→∞. After this initial release of signals there are no more uninformed agents, thus, the analysis

follows that of the sequential DeGroot model, in which we simply replace c(0) with µ1. Following

identical steps as in the analysis before leads to

plim
n→∞

c(K) =
K∑
j=2

 K∏
k=j+1

(
1− wkλ̄

)wj λ̄µj +
K∏
j=2

(
1− wj λ̄

)
µ1

Which will generically not be equal to µ.20 Hence, in this case, even tho the mean of the prior has

been washed out, beliefs do not converge to θ as the conditional means of the signals are weighted

with distorted weights.

Prior-less Model without Signal Conditioning

Following identical steps as in the GDG Model with Signal Conditioning, but realizing that

when the information release rule can not condition on signal realization µk = θ ∀k leads to

plim
n→∞

c(K) =
K∑
j=2

 K∏
k=j+1

(
1− wkλ̄

)wj λ̄θ +
K∏
j=2

(
1− wj λ̄

)
θ = θ

Hence, once more, the weights of the signals are distorted, however now wisdom holds within each

information release round, and consequently the consensus will be equal to θ after each round.

Thus, under this specification, wisdom prevails.

References

Acemoglu, D., Dahleh, M. A., Lobel, I., and Ozdaglar, A. (2011). Bayesian learning in social

networks. The Review of Economic Studies, 78(4):1201–1236.

Bala, V. and Goyal, S. (1998). Learning from neighbours. The review of economic studies, 65(3):595–

621.

19Note that the cardinality of γ(1) in expectation is equal to w1n. Hence, the cardinality of γ(1) increases as
n→∞. If w1 = 0, we can simply re-define the second round as the first round, and the analysis follows through.

20To see this, notice that the attainable space of parameters for wk and µk with the constraint that
∑
wk = 1 and∑

wkµk = µ, lies in a subset of [0, 1]2K−2. Having plimn→∞ c
(K) equal to µ adds a new constraint not implied by

the previous constraints, reducing the dimensionality to 2K − 3.

47



Banerjee, A., Breza, E., Chandrasekhar, A. G., and Mobius, M. (2019). Naive learning with

uninformed agents. Technical report, National Bureau of Economic Research.

Banerjee, A. V. (1992). A simple model of herd behavior. The quarterly journal of economics,

107(3):797–817.

Bikhchandani, S., Hirshleifer, D., and Welch, I. (1992). A theory of fads, fashion, custom, and

cultural change as informational cascades. Journal of political Economy, 100(5):992–1026.

Bohren, J. A. (2016). Informational herding with model misspecification. Journal of Economic

Theory, 163:222–247.

Brandts, J., Giritligil, A. E., and Weber, R. A. (2015). An experimental study of persuasion bias

and social influence in networks. European Economic Review, 80:214–229.

Chandrasekhar, A. G., Larreguy, H., and Xandri, J. P. (2020). Testing models of social learning

on networks: Evidence from two experiments. Econometrica, 88(1):1–32.

Choi, S., Gale, D., and Kariv, S. (2008). Sequential equilibrium in monotone games: A theory-based

analysis of experimental data. Journal of Economic Theory, 143(1):302–330.

Choi, S., Gale, D., and Kariv, S. (2012). Social learning in networks: a quantal response equilibrium

analysis of experimental data. Review of Economic Design, 16(2-3):135–157.

Corazzini, L., Pavesi, F., Petrovich, B., and Stanca, L. (2012). Influential listeners: An experiment

on persuasion bias in social networks. European Economic Review, 56(6):1276–1288.

Dasaratha, K. and He, K. (2020). Network structure and naive sequential learning. Theoretical

Economics, 15(2):415–444.

DeGroot, M. H. (1974). Reaching a consensus. Journal of the American Statistical Association,

69(345):118–121.

DeMarzo, P. M., Vayanos, D., and Zwiebel, J. (2003). Persuasion bias, social influence, and

unidimensional opinions. The Quarterly journal of economics, 118(3):909–968.

Enke, B. and Zimmermann, F. (2017). Correlation neglect in belief formation. The Review of

Economic Studies, 86(1):313–332.

48



Eyster, E. and Rabin, M. (2010). Naive herding in rich-information settings. American economic

journal: microeconomics, 2(4):221–43.

Eyster, E., Rabin, M., and Weizsacker, G. (2015). An experiment on social mislearning.

Gale, D. and Kariv, S. (2003). Bayesian learning in social networks. Games and economic behavior,

45(2):329–346.

Golub, B. and Jackson, M. O. (2010). Naive learning in social networks and the wisdom of crowds.

American Economic Journal: Microeconomics, 2(1):112–49.

Grimm, V. and Mengel, F. (2020). Experiments on belief formation in networks. Journal of the

European Economic Association, 18(1):49–82.

Hazla, J., Jadbabaie, A., Mossel, E., and Rahimian, M. A. (2019). Reasoning in bayesian opinion

exchange networks is pspace-hard. In Conference on Learning Theory, pages 1614–1648.

Jackson, M. O. (2010). Social and economic networks. Princeton university press.

Kemeny, J. G. and Snell, J. L. (1960). Finite markov chains. d van nostad co. Inc., Princeton, NJ.
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