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Abstract

In environments where carrying out Bayesian updating is computationally unfeasi-

ble, the DeGroot model has emerged as a heavily utilized alternative. An assumption

present across all iterations of this model is that agents receive information simultane-

ously. We depart from this setup by allowing for the sequential arrival of information.

We find final beliefs can be altered by varying only the sequencing of information,

keeping the information content unchanged. Sequential information arrival often un-

dermines the wisdom of crowds, leading to belief divergence from the truth even as

group size increases without bounds. When agents assign fixed weights to their signals,

we identify the highest and lowest attainable consensus, bounding the range of belief

variation due to information sequencing. Groups in which all members are equally

influential turn out to be most susceptible to information sequencing.
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1 Introduction

1.1 Overview

In a wide range of settings, social learning is a vital channel of information transmission.

Examples abound: the members of hiring committees rely on colleagues’ impressions of can-

didates; individuals consider others’ choices when deciding which car to purchase, which

schools to send their children to, or which political candidates to support. In such learn-

ing environments, information often arrives over time. Consider a committee evaluating a

candidate, where, in addition to common information—the candidate’s CV, letters of recom-

mendation, and so on—each member receives additional private information—e-mails from

previous employers, conference interactions, and so forth. Some of the information might

work in the candidate’s favor, and some might not. Does it matter if information arrives

all at once or in sequence? Does it matter if good news arrives first, followed by bad, or

vice versa? Do features of the committee, such as the social influence of various members,

interact with the ordering of information? These questions are at the heart of this project.

Under Bayesian learning, the order in which agents receive information has no impact in

and of itself. However, when agents in a network act repeatedly, despite its normative appeal,

the requirement of Bayesian updating is arguably strong. A growing body of literature—

both theoretical and experimental—casts doubt on the ability of individuals to meet the

demands of Bayesian updating, especially in complex environments with high computational

and information demands.1 As a consequence, to a large extent, the literature has focused

on naive social learning, where agents use simpler, less demanding heuristics to update their

beliefs. In particular, the DeGroot (1974) model has emerged as the canonical boundedly

rational model and has become one of the most widely used social-learning models over

the past five decades.2 In academia, it serves as a foundational framework for studying

social learning, opinion dynamics, and network theory across disciplines such as economics,

political science, sociology, and computer science. The DeGroot model is also used beyond

academia in areas such as consumer behavior analysis, predicting viral trends in social media,

public opinion monitoring, communication campaigns, and corporate decision-making. The

1Hazla et al. (2019) study the complexity required for Bayesian learning in repeated action settings, and
in line with what has anecdotally been accepted for a long time, find that it is rather extreme; in particular,
they show that the problem is PSPACE-hard.

2The reduced complexity requirement, coupled with the tractability of DeGroot learning, has led to the
model’s proliferation in the study of social learning with repeated updating. Several experimental papers find
observed data often, in contrast to the Bayesian model, follows patterns predicted by the DeGroot model.
The model has attractive long-run information-aggregation properties and has been recently axiomatized.
See Section 1.2 for relevant papers.
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model’s adaptability and ease of use, due to its simple heuristics, make it an essential tool

for both theoretical work and real-world applications.

In this paper, we study the impact of information ordering when agents learn via these

simpler heuristics. However, taking the DeGroot model off the shelf and studying how

information ordering affects beliefs is not possible due to an underlying assumption that the

model has, namely, that in period one, agents start with a set of beliefs that evolve according

to the DeGroot rule from that point onward. If we interpret the difference between these

initial beliefs as a result of different information, the above boils down to assuming that all

information arrives before communication begins. In this paper, we depart from this setup

and allow for information to arrive sequentially. In doing so, we aim to achieve two goals: to

study how information sequencing affects beliefs when belief updating is carried out through

feasible means, and to relax a prevailing assumption in the canonical DeGroot model and

see which of its features carry through.

To study the effect information ordering has on beliefs formed within a group, we analyze

a setting in which a group of agents repeatedly guess a state of interest while observing

previous guesses of other group members they are connected to. Concretely, we extend the

DeGroot model to allow for sequential information arrival. Under DeGroot learning, agents

update their beliefs by taking weighted averages of their past beliefs and the past beliefs of

other group members they pay attention to. Importantly, the weight each agent places on

others is assumed to be fixed. In the model we analyze, each agent is associated with a single

private signal, a time at which the signal is received, and a weight the agent places on the

signal once it is received, which can be history-dependent. Information arrives at specific

rounds, in which a subset of agents receive their private signals. After each information

release, communication takes place, and the new information disseminates in the network,

leading to a new consensus.3 Subsequently, other agents receive their private signals, followed

by communication, and so on, until all agents receive their private signals. From this point

onward, communication takes place as in the standard DeGroot model.

Our first finding is that the sequence of information arrival affects the group’s final beliefs,

even when the network structure and the signals associated with each agent are fixed. In

other words, although the environment and the objective evidence are unchanged, the order

in which this evidence is presented leads to different conclusions. The influence a signal

has on the group’s final beliefs depends on the weight that the agent receiving it places

on the signal, the network influence of this agent, and the time at which the signal was

received. This differs from the standard DeGroot model, where the influence a signal has on

3Having a consensus arise between rounds of information arrival makes displaying results in a clear manner
easier, but it is by no means a necessary component for any of the results.
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the group’s final beliefs depends only on the network influence of the agent receiving it.

We find there exist no weighting profiles agents place on their own signals that can

offset this effect. Thus, regardless of how agents incorporate their own signals, be it in very

mechanical or highly sophisticated ways, as long as learning takes place through a DeGroot

fashion, information sequencing will affect the final beliefs.

Our next set of results relates to the group’s ability to adequately aggregate information

as the number of group members grows. The wisdom of crowds, analyzed in Golub and

Jackson (2010), states that under DeGroot learning, in large societies where no agent is

disproportionately influential, beliefs converge to the realized true state. By contrast, once we

allow for sequential information arrival, we find wisdom typically fails, and beliefs converge

away from the truth even as the number of agents grows without bounds. We emphasize that

wisdom typically fails if agents have an informative prior with regard to the state they aim

to learn. In cases with limited information, the prior helps create a more efficient estimate of

the realized state. However, when information is sufficient for the realized state to be fully

revealed, the impact of the prior optimally washes away. In the current setting, although the

influence of the prior diminishes with each round of information release, this influence does

not reduce all the way to zero, and consequently, the prior affects the final consensus. We

show that even in cases in which agents have an uninformative prior—learning about a new

product, a new political candidate, and so on—their beliefs may nonetheless converge away

from the truth if information is released sequentially. Importantly, this happens even though

the weight of each agent continues to shrink to zero. What causes wisdom to fail in this case

is the distorted weights signals have based on the time in which they were released. If any

correlation exists between the realized signal values and the round at which they are released,

the final beliefs converge away from the truth. However, in specific networks, wisdom persists

if agents have an uninformative prior and no relation exists between realized signal values

and their release time. This set of findings reveals that once we consider an environment

with sequential information arrival, the ability to adequately aggregate information is greatly

compromised; in all but very specific cases, wisdom fails.

In the rest of the paper, we assume agents place a fixed weight on their own signal,

regardless of when they receive the signal. We consider this assumption the most faithful

extension of the DeGroot model, the motivation behind which is the reliance on simple

heuristics. Furthermore, Reshidi (2023) finds experimental evidence in support of such fixed

weights. Under this assumption, the earlier a signal is released, the lower its weight will be on

the final beliefs formed by the group. This observation allows us to identify the information-

release sequences that yield the highest and lowest attainable consensus. In particular, these

sequences that attain the extreme consensus values release information in a monotonic order,
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from lowest to highest, or vice versa, with a possible joint release of information in the last

round. By identifying these sequences, we bound the variation in the final beliefs that can be

attributed to the ordering of information release. Thus, within this framework, whatever the

order of information turns out to be, the final beliefs must fall within the identified bounds.

We also derive features of the maximal consensus sequence under limited information rounds

for a large society.

Finally, we analyze features of the underlying network that affect its susceptibility to the

sequencing of information. In particular, we take an ex-ante approach and assess how the

expected gap between the highest and lowest attainable beliefs differs as the influence of

each group member changes. Formally, influence corresponds to the eigenvector centrality

of an agent, which is a commonly used measure in the social network literature. An agent’s

influence depends on the network structure, how many other members listen to the particular

group member, and what weights they place on her opinion. We find the expected gap is

maximized when influence is uniformly distributed across all group members. That is, groups

in which each member has an equal voice are groups whose beliefs are most susceptible to

manipulation through information ordering.

1.2 Related Literature

In the sequential-learning literature, where agents act only once, the Bayesian-learning ap-

proach has been quite standard; see Banerjee (1992), Bikhchandani et al. (1992), Smith

and Sørensen (2000), Acemoglu et al. (2011), Lobel and Sadler (2015). By acting only once,

agents’ strategic concerns are rather limited, making Bayesian learning a reasonable assump-

tion. However, non-Bayesian models are still present in this setting, see Eyster and Rabin

(2010), Bohren (2016), Dasaratha and He (2020), to name a few.

The Bayesian paradigm has been applied in social-learning settings with repeated actions

in papers such as Gale and Kariv (2003), Rosenberg et al. (2009), Mueller-Frank (2013),

Mossel et al. (2015), Mossel et al. (2020). These papers may limit strategic interactions; for

example, Gale and Kariv (2003) assume agents observe only the distribution of actions and

that each agent is a small enough part of society for their actions not to affect aggregate

outcomes and consequently greatly reduce strategic concerns. Alternatively, these papers

study aspects such as whether agreement and proper information aggregation will occur at

the asymptotic steady state. Although understanding the features of Bayesian learning in

this setting is of great importance, the complexity required to carry out such learning in

practice is immense. Hazla et al. (2019) study the complexity required for Bayesian learning

in repeated-action settings, and in line with what has anecdotally been accepted for a long
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time, find it is rather extreme. In particular, they show the problem is PSPACE-hard.

The computational complexity of carrying out proper Bayesian updating in such settings

has been an issue since experimental works such as Kübler and Weizsäcker (2004), Choi

et al. (2008), Choi et al. (2012), Corazzini et al. (2012), Eyster et al. (2015), Enke and

Zimmermann (2017), Brandts et al. (2015), and Chandrasekhar et al. (2020), show people

tend to make far-from-optimal choices in rather simple environments requiring only basic

inference. To avoid computational complexity, which seems far beyond what humans can

reasonably handle, and to gain additional tractability, a large body of literature studies social

learning with repeated actions under non-Bayesian learning. Papers such as Bala and Goyal

(1998), Levy and Razin (2018), Mueller-Frank and Neri (2021), Golub and Jackson (2010),

and Banerjee et al. (2021) fall within this category. Our primary difference from these papers

is our focus on the ordering of information arrival and how it shapes final beliefs.

Among the non-Bayesian models, the DeGroot model, as first analyzed in DeGroot

(1974), has emerged as the predominant alternative. A more behavioral interpretation of

the model is covered in DeMarzo et al. (2003), whereas Golub and Jackson (2010) highlight

desirable features of the model. Concretely, they find that despite its reliance on simple

heuristics, under mild assumptions, the final consensus of beliefs updated in a DeGroot

manner converges to the realized value of the parameter of interest. Furthermore, Molavi

et al. (2018) develop axiomatic foundations of the DeGroot model. They find DeGroot learn-

ing is the unique learning rule to satisfy imperfect recall, label neutrality, monotonicity, and

seperability.

Also of relevance is the work of Banerjee et al. (2021), who extend the DeGroot model

to allow for uninformed agents. Although this work is not directly related to information

sequencing, we use this framework in a particular case when analyzing the robustness of the

wisdom of crowds.

In addition to the simplicity and tractability that the DeGroot model offers, experimental

studies such as Chandrasekhar et al. (2020), Grimm and Mengel (2020), and Brandts et al.

(2015) suggest the model predicts observed behavior often better than the Bayesian model.4

In Reshidi (2023), we reach similar conclusions in a setting where information arrives sequen-

tially. In the setting analyzed in that paper, with Bayesian agents, information sequencing

is expected to generate no difference compared to a simultaneous release of information.

However, we demonstrate information sequencing alone causes substantial and statistically

4In a field experiment, and in an additional lab experiment, Chandrasekhar et al. (2020) find the share
of DeGroot agents to be 90% and 50%, respectively. Grimm and Mengel (2020) find that in explaining
individual-level decisions, the DeGroot model outperforms the Bayesian model. Brandts et al. (2015) find
that, in line with the DeGroot model, agents with more outgoing degrees have a greater influence on the
final consensus.
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significant differences. We reveal that not only does the sequencing of information affect

final beliefs, but it does so in a manner well predicted by a sequential version of the DeGroot

model.

2 Model

A finite set N = {1, 2, . . . , n} of agents interact through a social network. Each agent is

represented by a node, whereas their interactions are captured by an n × n nonnegative

matrix M . The matrix M is a stochastic matrix: the sum of each row is normalized to add

up to 1. The matrix is not required to be symmetric; that is, mij is not necessarily equal

to mji, where mij represents the entry on row i and column j of the matrix M . Entry mij

captures the attention or the weight that agent i places on agent j.

Agent i in time t has belief bi,t ∈ R. Importantly, although in line with the existing liter-

ature, we refer to these values as beliefs, they do not describe agents’ posterior distributions

of a state of interest; rather, these beliefs can be thought of as agents’ opinions, guesses, or

best estimates of a state of interest. Let bt represent the vector of beliefs of all agents in time

t. Agents start with a common belief c0; thus, all entries of b1 are equal to c0. Associated

with agent i is a signal si, which the agent receives at time t̂i. Let H
t represent the history

of information releases up to time t. In practice, H t can be thought of as a vector of length

n with the jth entry being equal to t̂j if t̂j < t and 0 otherwise. Let the weight an agent

places on their signal λi (H
t) be a mapping from the set of all possible histories up to time t

to weights in [0, 1]. That is, how much agent i is influenced by her private signal may depend

on the agent’s identity, the time of her information arrival, and the history of information

release. Let γ(k) represent the set of agents for whom information arrives in time k, that is,

i ∈ γ(k) if t̂i = k. Signals arrive after communication has taken place in that round; hence,

the vector of beliefs evolves as follows:5

bt = (I − Γt) ◦Mbt−1 + Γt ((I − Λt) ◦Mbt−1 + Λts) , (1)

where ◦ represents the element-wise product or the Hadamard product, Γt is a diagonal

matrix with γii = 1 if i ∈ γ(t) and γii = 0 otherwise, and Λt is also a diagonal matrix with

5Final beliefs are identical to the case in which information is received at the beginning of the round with
the alternative release time t̃i = t̂i + 1, and alternative signal weights λ̃i(H

t) = λi(H
t)/mii, leading to the

following equation representing the evolution of beliefs

bt = M
(
(I − Γt) bt−1 + Γt

((
I − Λ̃t

)
bt−1 + Λ̃ts

))
.
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λi(H
t) being the diagonal entry in row and column i. Thus, the beliefs of agent i are as

follows

bi,t =

{
(1− λi(H

t))
(∑N

j=1mijbj,t−1

)
+ λi(H

t)si if t = t̂i∑N
j=1mijbj,t−1 if t ̸= t̂i

If agent i does not receive their private signal in round t, they form their new beliefs by

simply taking a weighted average of their own previous-period beliefs, as well as the beliefs

of the agents they pay direct attention to. When agent i receives a signal, beliefs are updated

in the same manner, and afterward, the signal is incorporated with weight λi(H
t). Note that

in all rounds in which agents do not receive a private signal, updating is carried out as in

the classic DeGroot model. That is, for any agent, beliefs in time t are a weighted average

of their own and their neighbours’ beliefs in time t − 1. The departure is then with regard

to incorporating private signals in a sequential manner. We can think of the DeGroot model

as a special case of the current model where all private signals arrive in round t = 1, and all

that is left is for agents to repeatedly calculate weighted averages until a consensus emerges.

3 Information Sequencing and Beliefs

3.1 Belief Convergence

We begin by analyzing how beliefs evolve within rounds in which no new information is

released. No information release in equation (1) corresponds to Γ being a null matrix. As a

result, beliefs in the next period can be expressed as bt+1 = Mbt. In line with the DeGroot

model, the newly formed beliefs of each agent are weighted averages of the beliefs of the agents

they pay direct attention to. Continuing in this fashion, as long as no new information is

released, beliefs in round t + 2 can be expressed as bt+2 = Mbt+1 = M (Mbt) = M2bt. We

can express beliefs after j rounds of no information release as bt+j = M jbt. The matrix M

can be thought of as a transition matrix of a Markov chain. Since our focus is on analyzing

final beliefs, in line with the rest of the literature, we assume that the matrix M is strongly

connected. It is well known that if matrix M is strongly connected and aperiodic, then it is

convergent. This matrix has a unique eigenvalue equal to 1, whereas all other eigenvalues

have modulus smaller than 1. Furthermore, a unique left-row eigenvector π exists satisfying

πM = π, corresponding to eigenvalue 1, with
∑

i πi = 1, such that for any initial vector of
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beliefs bt,

lim
j→∞

bi,t+j = lim
j→∞

(
Mkbt

)
i
= πbt.

Thus, with a strongly connected and aperiodic network matrix M , if enough rounds of com-

munication take place between information-release rounds, beliefs converge to a consensus.

Furthermore, the consensus will be formed by a convex combination of the starting beliefs,

where the weight of each belief is represented by the corresponding πi value on the left eigen-

vector. We can think of πi as the influence of agent i because it captures the weight the

initial belief of agent i has on the consensus.

Note that if there are no rounds of communication between information release rounds,

the problem reduces to one in which all information is released simultaneously. Hence, for

this setup to differ from the benchmark DeGroot model, communication must take place

between information-release rounds. Throughout the analysis, we will assume that between

rounds of information release, communication takes place until a consensus is formed. While

this may appear like a strong assumption, all results up to Section 5 hold without it. This

assumption simply allows us to write final beliefs explicitly and keep proofs concise. Even

in Section 5 where this assumption greatly helps with tractability, we show that results go

through with finite, albeit sufficiently large, rounds of communication.6

We now consider where beliefs converge after each—and specifically after the final—round

of information release. We relabel beliefs as b
(k)
i,t , where i represents an agent, k stands for the

number of information-release round, and t represents the number of rounds since the last

information release. Furthermore, we denote initial beliefs after new information has just

been released as b̃
(k)
i = b

(k)
i,1 , and beliefs after communication has taken place as b̂

(k)
i = b

(k)
i,∞.

From the discussion above, we know that after enough rounds of communication, beliefs will

once more converge, and for any i and j, b̂
(k)
i = b̂

(k)
j = c(k), where c(k) represents the new

consensus after communication takes place in the k’th round of information release. From

the above discussion, we also know the new consensus will be equal to c(k) =
∑N

i=1 πib̃
(k)
i .

Thus, beliefs immediately after new information is released will be

b̃
(k)
i =

{ (
1− λi(H

k)
)
c(k−1) + λi(H

k)si if i ∈ γ(k)

c(k−1) if i ̸∈ γ(k)
, (2)

6Another advantage of assuming a consensus forms between information release rounds is that it mutes
the specific influence of the network structure. This allows us to focus on the impact of the sequencing of
information on the final consensus, which is the main focus of this paper.
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whereas beliefs after information is released and communication takes place will be

b̂
(k)
i = c(k) =

1−
∑
j∈γ(k)

πjλj(H
k)

 c(k−1) +
∑
j∈γ(k)

πjλj(H
k)sj. (3)

After each round of information release and after communication takes place, a new consensus

arises. The new consensus is a convex combination of the previous consensus and the signals

released in that information round. How much these signals affect the new consensus depends

initially on the weights the agents who received them place on their own signals, namely,

λi(H
k). Naturally, if an agent ignores their own signal, the signal will fail to affect the beliefs

of others. Furthermore, each signal’s impact on the new consensus depends on the influence

measure πi of the agent receiving the signal. Regardless of how much weight an agent places

on their own signal, if the rest of society places little to no weight on this agent, their signal

will have little to no effect on the new consensus.

Proposition 1 (Belief Convergence). After all signals are released, the beliefs of each agent

converge to the consensus belief

c(K) =
K∑
k=1

 K∏
z=k+1

1−
∑
j∈γ(z)

πjλj(H
z)

 ∑
i∈γ(k)

πiλi(H
k)si +

K∏
k=1

1−
∑
j∈γ(k)

πjλj(H
k)

 c(0).

Recursive replacement of c(k) in equation (3) leads to the equation in Proposition 1. As

can be seen, the final consensus will be a weighted average of the initial consensus c(0) and

all the signals agents receive.7 The influence of each signal on the final consensus, the value

multiplying the signal, depends on the weight the agent who received it placed on the signal,

the social influence of said agent—and the time when the signal was released. If a signal

is released in information round k, the weight it has on the final consensus is multiplied

by
∏K

z=k+1

(
1−

∑
j∈γ(z) πjλj(H

z)
)
. Since each

(
1−

∑
j∈γ(z) πjλj(H

z)
)
< 1, this multiplier

serves as a discounter. Once a signal is released, its weight diminishes with each additional

wave of new signals.

3.2 Sequencing Dependence

Proposition 1 reveals that the ordering of information affects a signal’s influence on the final

consensus. Thus, other things equal, we expect changing the ordering of information release

to affect the final consensus that is eventually formed. However, there may be one way to

7That is, the above is written in the following form c(K) =
∑n

i=1 αisi + α0c
(0), with

∑n
i=0 αi = 1.
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eliminate the influence of information sequencing on the final consensus. Because the weight

an agent places on their signal may be history-dependent, we next see whether there exist

weights that can offset the impact of information sequencing, making the final consensus

once more independent of the order of information arrival.

Definition 1 (Sequencing Independence). Beliefs in a network are sequencing independent

if, for any vector of signals, the final consensus remains unchanged after changing any sig-

nal’s order of arrival.

Once more, let n represent the number of agents andK represent the number of information-

release rounds.8

Proposition 2 (Sequencing Dependence). No λi(H
k) weights exist that lead to sequencing-

independent beliefs.

Thus, even if we handpick the weight each agent placed on their signal after each observed

history, we would not be able to find weights that make beliefs sequencing independent.

Proposition 2 highlights an important feature that accompanies DeGroot learning when

information no longer arrives simultaneously. If information arrives sequentially, regardless

of how this information is incorporated—be it quite mechanically, using the same λi weight

irrespective of when information arrives; or through optimal Bayesian weights, adequately

assessing the existing informativeness in the network at the time when their signal arrives

and weighting their signals accordingly—the particular sequencing of information will affect

the final consensus. Hence, the ability to affect the final consensus by changing the order

of information is not driven by how information is incorporated; rather, it is fundamentally

related to DeGroot learning.

4 The Wisdom of Crowds under Sequential Informa-

tion Arrival

4.1 Wisdom of Crowds Prerequisites

Despite its reliance on simple heuristics, the DeGroot model has appealing features beyond

the gains in tractability. One such feature is the tendency of social learning in this envi-

ronment to converge to the truth. Golub and Jackson (2010) find that in a society where

8We assume there exists at least one information release history such that for at least two agents i and j,
maxk πiλi(H

k) > 0, and maxk πjλj(H
k) > 0. By doing so, we simply exclude trivial cases in which beliefs

are always equal to the initial consensus or cases in which only one agent places a non-zero weight on their
signal—making sequential information arrival meaningless.
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learning takes place in a DeGroot fashion, beliefs converge to the correct state under rela-

tively weak conditions. This feature is labeled the wisdom of crowds, an important feature as

it suggests society as a whole does not need to act optimally for information to be correctly

aggregated; rather, by relying on numerous sources of information, even with an imperfect

information-aggregation process, the final beliefs converge to the truth. The objective of

this section is to examine whether this result persists when information arrives sequentially.

In Section 7.1 in the Appendix, we provide a brief overview of the formal concept of the

wisdom of crowds.

In the sequential-information-arrival model studied thus far, the initial consensus serves

a role comparable to that of a prior. As shown, the initial consensus plays a key role in

determining agents’ beliefs since it shows up even in the final consensus. To create an

environment more aligned with Golub and Jackson (2010), we have to get rid of the initial

consensus. However, modifying the model to get rid of the prior raises the issue of handling

belief updating when facing agents whose beliefs are an empty set; these agents would be

the ones who do not receive a signal in the first round. In Section 7.1 in the Appendix we

introduce a modified version of the model presented in Section 2. This modified model can

be interpreted as a setup without prior information. This modification brings the model into

closer alignment with the aforementioned paper as well as other recent works in this topic.

4.2 Persistence and Failure of Wisdom

We now analyze different specifications and see whether wisdom persists when information

arrives sequentially. With regard to the evolution of beliefs, we consider both the initial

specification described in Section 2, which can be interpreted as one in which agents have an

informative prior, and the prior-free specification described in Section 7.1 in the Appendix.

We consider two information-release rules: one that conditions and one that does not

condition on signal realizations when assigning information-release rounds. Both scenarios

have relevance in varying contexts. In certain situations, the timing of information, whether

it’s positive, negative, or somewhere in between, may not be tied to any specific temporal

pattern. However, in other cases, there could be an association between the nature of

the information and when it is disclosed: A significant breakthrough in a particular drug’s

development (a positive signal) may require a longer timeframe and may naturally occur after

several unsuccessful attempts (negative signals); When news outlets have control over the

release of information, they often resort to sensationalist headlines to attract more attention

and viewership, prioritizing sharing positive (or negative) news before unveiling more neutral

or mundane updates; In a corporate setting, certain departments, such as sales, might find
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it easier to report information quickly, typically with neutral updates as performance can be

tracked year-round. In contrast, research and development teams may report less frequently

and might disclose either very positive or highly concerning news regarding anticipated

product improvements.

Let (M(n))∞n=1 represent a sequence of n-by-n interaction matrices indexed by n, the

number of agents in each network. Since we are interested in analyzing where the final beliefs

of the group converge, we maintain the assumption that each matrix is strongly connected

and aperiodic. Let (π(n))∞n=1 represent a sequence of influence vectors associated with each

network n. Let θ̃, the state of interest, be a random variable drawn from a non-atomic

distribution H normalized without loss of generality to be in [0, 1], with mean E[θ̃] = c(0).

Let θ represent the realized value of θ̃. Associated with each agent i in matrix n is a signal

si(n) ∈ [0, 1] drawn from a distribution F with variance σ2 and mean θ.9 Let the weight

an agent places on her signal received in information round k, λ
(k)
i (n), be drawn from a

distribution G(k) on [0, 1] with variance σ
2(k)
λ and mean λ̄(k).10

Consider a mapping γ that links information-release rounds {1, 2, . . . , K} to agents

{1, 2, . . . , n} for whom information arrives in that round. In particular, γ(n)[k] represents

the group of agents for whom information arrives in information round k in network n. We

can assume this mapping does not depend on signal realizations, in which case, we assume

the rule specifies probabilities ŵ1, ŵ2, . . . , ŵK such that
∑K

k=1 ŵk = 1, where ŵk represents

the probability that an agent will receive their signal in information round k. Alternatively,

we consider a case in which the mapping depends on the realized signals. In this case, we

assume i(n) ∈ γ(n)[j] if si(n) ∈ Sj, where ∪kj=1Sj = [0, 1] and Sj ∩ Si = ∅. That is, agent

i receives her signal in information round j, if her signal falls within the Sj partition. We

let Sk be an element of a measurable partition of the set of values that a signal can take,

such that the intersection of each element is empty and the union of all elements is equal to

the whole set. Let wk =
∫
1{x ∈ Sk}dF represent the mass of signals released in round k,

whereas µk = E[s|s ∈ Sk] represents their conditional expectation.

9Results go through if the state of interest, as well as the signals, lie in a multidimensional Euclidean
space.

10In effect, λ
(k)(n)
i weights do not need to be random. However, for ease of exposition, we assume these

weights are drawn from some distribution. To accommodate the fact that these weights may be history-
dependent, the distribution can be defined after the sequencing of information is specified and can be
different for each information round and history of information release G(k) = G(Hk). Results carry through
with deterministic λi(H

k)(n) under the assumption that the mean (across agents) of weights utilized in
information round k converges; otherwise, beliefs are not guaranteed to converge. With deterministic weights,
λ̄(k) can simply be thought of as the average weight utilized in information round k.
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Initial Model with Conditioning Under the initial model and a rule that conditions on

signal realization, the limit beliefs are

plim
n→∞

c(K) =
K∑
j=1

(
K∏

k=j+1

(
1− wkλ̄

(k)
))

wjλ̄
(j)µj +

K∏
j=1

(
1− wjλ̄

(j)
)
c(0) ̸= θ.

The above expression differs from θ for two reasons. First, the weights associated with the

conditional expectations are distorted away from the mass of signals released in that round.11

Second, the mean of the prior c(0) appears on the final consensus; thus, beliefs are drawn

toward this value.12 In cases with limited information, having a prior helps create a more

efficient estimate of the realized state, especially if the prior is much more informative than

a single signal. However, when the total available information is abundant and sufficient for

the realized state to be fully revealed, the impact of the prior optimally washes away. Yet,

in the current setting, because each agent places some weight on their prior and afterward

updates beliefs by averaging previous beliefs, the prior affects the final consensus. Because

for a non-atomic distribution of θ̃, the event in which the realized value θ is exactly equal to

the mean of the prior has mass zero, the fact that the mean of the prior does not wash away

pulls final beliefs away from the realized value θ.

Initial model without Conditioning Under the initial model and a rule that does not

condition on realized signals, the limit beliefs are

plim
n→∞

c(K) =

(
1−

K∏
j=1

(
1− ŵjλ̄

(j)
))

θ +
K∏
j=1

(
1− ŵjλ̄

(j)
)
c(0) ̸= θ.

In this case, the weights on the signals continue to be distorted, yet this distortion does not

pull away from the optimal guess because the expected signal value within each information

round is θ. This comes as a result of the lack of conditioning on the signal realizations when

assigning information-release rounds. However, as was the case in the previous setting, the

final beliefs do not converge to the realized value θ, because, once more, the mean of the

prior c(0) influences the final beliefs.13

11Recall from the law of iterated expectations that the proper way to stitch together conditional expecta-
tions so as to retrieve the unconditional expectation is θ =

∑k
i=1 wkµk.

12Note that, when information is released sequentially, c(0) shows up on the final beliefs even if all agents

had λ
(k)
i (n) = 1 weights ∀k. Only under a joint release of all signals in the first round and λ

(1)
i (n) = 1

weights would wisdom prevail. This would reduce the current setup to that analyzed in Jackson (2010).
13Only if the realized value θ was exactly equal to the mean of the distribution c(0) would beliefs have

converged to θ—a probability 0 event.
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Prior-free Model with Conditioning We now consider the setup in which agents who

do not receive a signal in the first round have their beliefs set to an empty set. After the

first round of information arrival, beliefs are updated according to the generalized DeGroot

model. In all remaining information rounds, because each agent will be informed, the belief

dynamics become identical to that of the initial model. We start by considering the case in

which the information-release rule conditions on signal realizations. In this case, the limiting

beliefs are

plim
n→∞

c(K) =
K∑
j=2

(
K∏

k=j+1

(
1− wkλ̄

))
wjλ̄µj +

K∏
j=2

(
1− wjλ̄

)
µ1 ̸= θ.

What makes this case distinct from the previous ones is that the mean of the prior no longer

appears on the final beliefs. The final consensus is now a convex combination of conditional

means. However, the weights associated with the conditional means are not wk. Because the

weight signals receive depends on the order of their release, if a correlation exists between

the value of the signals and the round in which they are released, the final beliefs generically

converge away from the truth.

Prior-free Model without Conditioning Finally, we consider the prior-free model and

a rule that does not condition on realized signals. Once again, after the first round of

information arrival, beliefs are updated according to the generalized DeGroot model. In all

remaining information rounds, because each agent will be informed, the belief dynamics

become identical to that of the initial model. In this case, the limit beliefs are

plim
n→∞

c(K) =
K∑
j=2

(
K∏

k=j+1

(
1− ŵkλ̄

))
ŵjλ̄θ +

K∏
j=2

(
1− ŵjλ̄

)
θ = θ.

Again, the prior does not appear on the final beliefs. Furthermore, because the information-

release rule does not condition on signal realization, each conditional mean is equal to the

unconditional mean of the signals. Although the weights associated with the signals re-

leased in different rounds are distorted, the convex combination is simply a mixture of the

unconditional expectation θ. Consequently, final beliefs are equal to this value. Thus, in

a setup in which agents have an uninformative prior, and no correlation exists between

information-release rounds and signal realizations, wisdom persists.

We summarize the above results in the proposition below.

Proposition 3 (The Persistence and Failure of Wisdom).
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Sequential Prior-free Sequential
DeGroot Model DeGroot Model

Signal Conditioning Wisdom Fails Wisdom Fails

No Signal Conditioning Wisdom Fails Wisdom Persists

When agents have an informative prior, by affecting their initial guesses, the prior distorts

the final beliefs. Consequently, final beliefs do not converge to the realized value θ. The only

way around this is to have an uninformative prior. In addition, under sequential information

arrival, an adequate weighting of the conditional means, as prescribed by the law of iterated

expectations, cannot be maintained. The only way around this is for each of the conditional

means to be equal to the unconditional mean, which happens if the rule that determines the

information-release rounds does not condition on realized signals.

In sum, once we allow for sequential information arrival in the DeGroot setup, the ability

to adequately aggregate information becomes challenging; for wisdom to go through, specific

conditions must be met.14 Importantly, in all cases where wisdom fails, it does so despite

each agent’s individual influence converging to 0 as N → ∞. Although individual weights

converging to 0 implies that idiosyncratic errors wash away, the weight of groups as a whole

impacts the final consensus. The timing of information shifts weights between groups, leading

to wisdom failing even though no agent is disproportionately influential.

5 Information Sequencing under Fixed Signal Weights

In the DeGroot model, despite the evolution of information, agents place fixed weights

on their neighbors’ beliefs. In the previous sections, we maintained this assumption while

allowing for weights on agents’ signals to be responsive to the history of information arrival.

There is a bit of a contradiction here. After all, the prevalence of the DeGroot model relies

on its simple heuristics. Proper usage of weights on agents’ own signals that can be adjusted

depending on the history of information arrival requires knowledge of the network structure,

knowledge of others’ signal precisions, knowledge of the timing of information arrival, and the

ability to incorporate this information. Although we allowed for such weights to highlight the

generality of the results, the most faithful extension of the DeGroot model would be one in

14In the prior-free sequential DeGroot setup, for wisdom to persist, the network structure must be such
that wisdom persists in the generalized DeGroot model as analyzed in Banerjee et al. (2021), which happens
for a select set of networks, see Section 7.1 for more details.
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which the weights on participants’ own signals are also fixed.15 Furthermore, Reshidi (2023)

finds that participants in the lab, placed in groups, facing sequential information arrival

while attempting to estimate a common parameter of interest, largely place fixed weights on

their own signal regardless of the timing of the signal’s arrival.16 Because fixed weights on

agents’ own signals seem most in line with DeGroot updating, because empirical evidence

supports such weights, and because this specification gives additional tractability, in this

section, we continue the analysis under the assumption that agents place a fixed weight on

the signal they receive regardless of when they receive this signal, namely, λi(H
k) = λi.

5.1 Consensus Maximizing and Minimizing Sequences

In this section, we identify the information-release sequence that leads to the highest and

lowest attainable final consensus and, in doing so, bound all possible final consensuses that

may arise as a result of the ordering of information. Thus, whatever the actual sequencing

of information turns out to be, the final consensus will fall within our identified bounds.

Proposition 4 (Maximal Consensus Sequence). Without loss of generality, let si < sj if

i < j. The final consensus is maximized under the following information sequencing:

γ(k) =

{
k if c(k−1) ≥ sk

{k, k + 1, . . . , n} if c(k−1) < sk
.

The information sequence that yields the highest attainable consensus releases informa-

tion sequentially in a non-decreasing order, starting from the signal with the lowest realized

value. Under this information release, the sequential release continues until the prevailing

consensus, if ever, becomes lower than the lowest realized signal not yet released, in which

case all signals are released jointly. To build some intuition for this result, note from Proposi-

tion 1 that the earlier a signal is released, the more it will be discounted from signals released

after it. The only possible countervailing force is the weight agents place on their own sig-

nals. But when these weights are fixed, the connection between the order of information and

the signal’s influence on the final consensus becomes deterministic. Namely, if a signal is

released early on, it will have a lower weight on the final consensus than the weight it would

have if it were released in later information rounds. Then, if we aim to maximize the final

consensus, we would lead with the low-valued signals since these signals will be more heavily

discounted the earlier they are released.

15By replacing λi(H
k) = λi, it is straightforward to see all previous results follow through with fixed

weights.
16See section 5, in particular, Table 4, Table 5, and Figure 5 in Reshidi (2023).
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Corollary 1 (Minimal Consensus Sequence). Without loss of generality, let si < sj if i < j.

The final consensus is minimized under the following information sequencing:

γ(k) =

{
n+ 1− k if c(k−1) ≤ sn+1−k

{1, . . . , k} if c(k−1) > sn+1−k
.

That is, the information sequence that yields the lowest attainable consensus releases

information sequentially in a non-increasing order, starting from the signal with the highest

realized value. Under this information release, the sequential release continues until the pre-

vailing consensus, if ever, becomes higher than the highest realized signal not yet released, in

which case, all signals are released jointly. Whereas Proposition 4 identifies the information-

release sequence that yields the highest attainable final consensus, Corollary 1 identifies the

information release sequence that yields the lowest attainable final consensus. In doing so,

within the analyzed framework, we bound all possible final consensuses that may arise as a

result of changes in the order of information.17

These identified bounds are important regardless of whether the sequencing of information

is handled by a decision-maker with a particular agenda or whether all agents receive their

information at random times. That is, there can be two interpretations of the work in this

section. First, by identifying the information release sequences that lead to the highest and

lowest attainable final consensus, we analyze how a decision maker may release information in

an attempt to manipulate the beliefs of a group. We can alternatively interpret this work in

a framework with a complete absence of a decision-maker. The above results can simply help

us identify the susceptibility of a society’s beliefs due to the ordering of information. In other

words, even if the ordering of information is completely random, it is informative to know

the bounds within which a society’s final consensus may fall. As long as information arrives

sequentially, a gap will exist between the highest and lowest attainable final consensus—a

gap identified by the above proposition and corollary.

Although in this section we maintained the assumption that after each round of informa-

tion release, communication takes place until a new consensus is reached, this assumption is

not necessary for the identified information-release sequences to remain maximal/minimal.

Proposition 5 (Communication Rounds). Let r represent the rounds of communication

between information-release rounds. ∃ r̃ : if r ≥ r̃, the identified sequences leading to the

extreme consensuses remain unchanged.

17Proposition 4 and Corollary 1 also reveal that to bound the final consensus, we do not need to search
through all nn possible information-release sequences, but only 2n sequences. For the maximal consensus
sequence, we need to consider only n possible releases, in which only the threshold beyond which signals are
released jointly differs. The same threshold logic holds for the minimal sequence.
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Thus, r̃ rounds of communication are sufficient for the results to hold. Although the

exact r̃ value depends on the network structure, note the network matrix M r converges

exponentially to the matrix composed of the left eigenvectors. Therefore, for a large class of

networks, r̃ will be fairly low.

5.2 A Large Society with Limited Information-Release rounds

The above analysis revealed that to achieve the highest and lowest attainable final consensus,

within an information round often a single signal is released. This can potentially be accom-

modated in small networks because only a few rounds of information release are needed for

the few agents who are present. However, in a large society with many agents, the number

of agents likely far outweighs the number of information-release rounds. In this section, we

study properties of the sequences that lead to the highest and lowest attainable consensuses

in a large society with limited rounds of information release.

A large society is captured by a sequence of networks where the number of agents n grows.

Specifically, (M(n))∞n=1 represents a sequence of n-by-n interaction matrices indexed by n,

the number of agents in each network. Because we are interested in analyzing where the

final beliefs of the group converge, we maintain the assumption that each matrix is strongly

connected and aperiodic. Let (π(n))∞n=1 represent a sequence of influence vectors associated

with each network n. We impose the following assumption:

max
i∈{1,...,n}

πi(n) → 0 as n→ ∞.

As the network grows, the influence of the most influential agent goes to 0. This ensures no

agent is disproportionately influential. Furthermore, let (λ(n))∞n=1 be a sequence of vectors

representing the weights that agents place on their private signals. To ensure a nontrivial

problem, we assume 1
n

∑n
i=1 λi(n) is bounded away from 0 for all n. Finally, let si(n) represent

a sequence of signals associated with agent i in network n.

Proposition 6 (Maximal Consensus Sequence with Limited Rounds). Let γ̄ represent the

maximal consensus sequence yielding the highest attainable consensus. Furthermore, let γ(k)

represent the set of agents for whom information arrives in information round k. Then,

max
i∈γ(k)

si < min
i∈γ(k+1)

si.

That is, under the maximal consensus sequence, the highest-value signal released in

information round k must be lower than the lowest-value signal released in information

round k + 1. Hence, the feature of the maximal structure identified with no limits on
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information rounds, namely, that signals are released in a non-decreasing fashion, prevails in

a large society with limited information-release rounds. Naturally, due to the symmetry of

the problem, a corollary can be derived for the minimal information-release sequence with

limited rounds.

The proof of the above proposition relies on showing the final consensus may be increased

by swapping the release time of a subset of signals with the release time of some other subset

of signals, where signals in the former subset have an earlier release date and higher realized

signal values compared to the later subset. As n increases, the added granularity makes it

possible to select subsets such that this swap has no impact on the discounting of any other

signals, leading to an unambiguous increase in the final consensus.

5.3 Influence and Sequence Susceptibility

We next analyze features of groups that affect their susceptibility to the sequencing of infor-

mation arrival. In particular, we study how the distribution of the influence vector—which

is a direct result of the network structure—affects the expected gap between the highest

attainable consensus, c(π, λ, s), and the lowest attainable consensus c(π, λ, s), where π, λ,

and s represent the influence vector, the vectors of weights agents place on their signals,

and the agents’ signals, respectively. Let signals si be i.i.d. random variables drawn from a

distribution F , and let λi be an i.i.d. random variable with distribution H on [0, 1].18

Proposition 7 (Influence and Sequence Susceptibility). E [c(π, λ, s)− c(π, λ, s)] is maxi-

mized for a influence vector π with uniform influences πi =
1
n
∀ i. As influence concentrates,

maxi πi → 1, toward a single agent (an opinion dictator), the gap shrinks to 0.

Proposition 7 reveals that groups that are the most susceptible to the ordering of infor-

mation are those in which each member has identical influence. To see why, recall that in

the final consensus, the weight of each signal depends on, among other things, the influence

of the agent who receives it and is discounted based on the influence of the agents receiving

signals in later rounds. By having uniform weight across all agents, when constructing the

maximal and minimal information sequence, numerous configurations are possible. Conse-

quently, in expectation, changing the signal-release order causes a substantial variation in

the final consensus, leading to a wide gap between the highest and lowest attainable con-

sensus. On the other hand, when each entry of π is not identical, which πi value will be

associated with which realized signal is not known ex-ante. Although the π values are fixed

while signals are random, realizing that the maximal/minimal information-release sequence

18These weights are considered fixed as they are drawn once and remain unchanged regardless of the
history of information release.
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releases information in a monotonic fashion leads to an alternative interpretation. The order

statistics of the signals may be considered fixed, whereas there is variation regarding which

πi value will be associated with which order statistic. This uncertainty does not affect the

weight of the signals released in the last round while boosting the weight of all previously

released signals. Consequently, the potency to generate a high/low final consensus shrinks,

leading to a decrease in the expected gap.

Figure 1: Expected Maximal(Minimal) Final Consensus
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The above graph is constructed from a network comprising five nodes. Signals are drawn from a normal distribution with a
mean of 1.5 and a standard deviation of 1. The initial consensus is set to c(0) = 1.2, while the mean weight placed on signals
is λ̄ = 0.8. On the far left, the influence vector is set to π = [0.2, 0.2, 0.2, 0.2, 0.2]. In each iteration, the influence of nodes 2
to 4 is reduced by 0.02, while the influence of the first node increases by 0.08. On the far right, the influence vector becomes
π = [1, 0, 0, 0, 0].

In the extreme case, when maxi πi = 1, all sequences result in the same final consensus

because now an opinion dictator exists. If maxi πi = 1, the sequence of information arrival no

longer plays a role. Whenever the agent whose influence is equal to one receives her signal,

be it immediately, slightly later, or much later, the beliefs of the whole group eventually

converge to the beliefs of this agent. Because no other agent has influence, even if other

agents receive signals afterward, the weight of the opinion dictator is not discounted, and

thus, the newly found consensus remains unchanged.

Figure 1 illustrates how the gap between the expected maximal and minimal final con-

sensus shrinks as the influence vector shifts from one in which all agents have equal influence

to an influence vector that places weight 1 on a single agent. As can be seen, as the in-

fluence focuses on a single individual, the gap between the expected highest and lowest

attainable final consensus shrinks, and consequently, beliefs become less and less affected
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by the sequencing of information.19 If a decision-maker had control over the sequencing of

information and wanted to manipulate the final consensus, they would prefer influence to

be equally distributed among group members, which would maximize the attainable final

consensuses, giving the decision-maker a richer set of choices.

6 Conclusions

We depart from the canonical DeGroot setup by allowing for information to arrive sequen-

tially. In doing so, we study an important dimension that arises once Bayesian learning

is no longer assumed: the order of information arrival affects final beliefs even when the

information content is unchanged. We find the influence a signal has on the final consen-

sus is no longer only a function of the social influence of the agent receiving it; the order

of information release also plays a crucial role, as does the weight the agent places on the

signal. Sequential arrival of information undermines proper information aggregation, with

beliefs typically converging away from the truth regardless of the abundance of information;

thus, celebrated features of the DeGroot model may be more fragile than previously thought.

For fixed weights on agents’ own signals, we identify the information sequence attaining the

maximal and minimal posteriors and show that in expectation, groups most susceptible to

the order of information are those in which all agents have equal influence. Experimental

evidence from Reshidi (2023) reveals the order of information arrival indeed affects final

beliefs formed by groups and that individuals update their beliefs following heuristics akin

to those studied in this paper.

19The fact that the expected maximal(minimal) final consensus is maximized for a uniform influence
vector is not a coincidence. The proof Proposition 7 reveals that not only the gap but also E [c(π, λ, s)]
(E [c(π, λ, s)]), is maximized(minimized) under uniform influences.

21



7 Appendix

7.1 Wisdom of Crowds Prerequisites: In More Detail

The Wisdom of Crowds We begin by defining the wisdom of crowds, as introduced

in Golub and Jackson (2010). Let (M(n))∞n=1 represent a sequence of n-by-n interaction

matrices indexed by n, the number of agents in each network. We maintain the assumption

that each network is convergent. There is a true state of nature θ, normalized without loss of

generality to be in [0, 1]. At time t = 0, each agent i has an initial belief bi,0(n) ∈ [0, 1]. These

beliefs are assumed to be drawn independently from a distribution with variance σ2 > 0.20

One of the main assumptions in the aforementioned paper is that the distribution of these

beliefs has mean equal to θ. For any given n and realization of beliefs, as communication

takes place, the belief of agent i in network n approaches a limit denoted by bi,∞(n). Because

these limit beliefs depend on the realization of the initial beliefs, each limiting belief itself is

a random variable. The sequence (M(n))∞n=1 is wise if

plim
n→∞

max
i≤n

|bi,∞(n)− θ| = 0.

That is, a society is considered wise if, as the number of agents increases, the final beliefs

converge in probability to the realized value θ. The assumption that each matrix is convergent

implies

bi,∞(n) =
n∑
j=1

πj(n)bj,0(n),

where πj(n) represents the influence of agent j in-network n, the jth entry in the left eigen-

vector corresponding to the eigenvalue equal to 1.

Proposition 2 in Golub and Jackson (2010)

If (M(n))∞n=1 is a sequence of convergent stochastic matrices, it is wise if and only if the

associated influence vectors are such that maxi≤n πi(n) → 0 as n→ ∞.

The intuition of the above result is as follows. If, as the number of agents grows, the

influence of the most influential agent shrinks to 0, the idiosyncratic errors associated with

each agent wash away, and consequently, the consensus converges to the mean of the initial

beliefs, which is θ.

A key assumption here is that initial beliefs are centered around θ. If we interpret

20The results follow even when each belief is drawn from a different distribution with bounded support.
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agents’ initial beliefs as driven by unbiased signals they receive (signals centered around the

realized value θ), for the agents to follow these signals fully, it must be that their prior is

uninformative; otherwise, their beliefs at time t = 0, their optimal guesses, would not simply

be equal to the signal they receive but would instead incorporate information from their

prior.21 Hence, if we want to interpret the setup analyzed in Golub and Jackson (2010)

as one driven by information, we have to acknowledge this underlying assumption of an

uninformative prior.

In our sequential-information-arrival model studied thus far, the initial consensus serves

a comparable role to that of a prior. As shown, the initial consensus plays a key role in

determining agents’ beliefs since it shows up even in the final consensus. To create an

environment more aligned with Golub and Jackson (2010), we have to get rid of the initial

consensus. However, modifying the model to get rid of the prior raises the issue of handling

belief updating when facing agents whose beliefs are an empty set; these agents would be the

ones who do not receive a signal in the first round. Banerjee et al. (2021) study an extension

of the DeGroot model in which all information arrives in the first round; however, not all

agents receive a signal. They modify the DeGroot model by proposing a learning rule for

agents whose beliefs are an empty set. Below, we highlight some of the main takeaways of

this model since they will shortly become relevant.

The Generalized DeGroot Model Banerjee et al. (2021) builds on the DeGroot model

by introducing uninformed agents. Within this setup, at any point in time t, an agent is

either informed or uninformed. An informed agent at time t holds belief bi,t ∈ R, whereas an

uninformed agent holds the empty belief bi,t = ∅. The initial opinions of informed agents are

an unbiased signal of the true state θ, drawn from some distribution F with finite variance

bi,0 = θ + εi, ε ∼ F (0, σ2). At time t = 0, a subset of agents receive a signal, while the

remaining agents never receive a signal. All agents with whom a node is linked are called

neighbors of that node. Let the set J ti denote the set of informed neighbors of agent i at

time t. The authors specify what they name generalized DeGroot updating as follows 22

bi,t+1 =

 ∅ if J ti = ∅∑
j∈Jt

i
bj,t

|Jt
i |

if J ti ̸= ∅
.

Under this specification, agents who do not receive a signal are initially uninformed until one

21For example, in the case of a normally distributed prior and signals, their optimal guess would be a
convex combination of the mean of the prior and the realized signal, which would generically not be centered
around the realized value θ.

22As discussed in Banerjee et al. (2021), the results generalize to non-uniform weighting.
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of their neighbors becomes informed, in which case, they adopt the belief of their neighbor. If

more than one neighbor is informed, agents average out these beliefs. A crucial assumption

in this paper is that if an agent does not receive a signal, their beliefs are an empty set,

and if an agent receives a signal, their belief is set exactly equal to this signal. Again, an

information-driven interpretation of this setup corresponds to the uninformative prior case,

leading agents who receive signals to fully adopt their signal as their optimal guess.

The authors find that when uninformed agents are present, even if maxi πi(n) → 0 as

n → ∞, wisdom may fail. However, they identify network structures for which wisdom

prevails; as such, the final beliefs converge in probability to the mean of the signals the

agents receive. Because this section aims to identify conditions in which wisdom may break

down due to the sequential arrival of information and not due to the sparsity of information

in the first information round, in what follows, we assume the network structure permits

wisdom to go through in a generalized DeGroot model.23

Prior-free Sequential Belief Updating We now incorporate the above specification in

our sequential setup. That is, we assume agents who do not receive a signal in the first

information round, i ̸∈ γ(1), have beliefs set to an empty set b
(1)
i,0 = ∅. On the other hand,

agents who receive a signal in the first information round, i ∈ γ(1), set their beliefs equal to

their signals b
(1)
i,0 = si. To accommodate this, in our initial setup, we must modify the weights

agents place on their own signal. Specifically, let λ̃i(H
k) represent the original weight par-

ticipant i places on their signal. We make the following modification: λi(H
1) = 1 if γi = 1,

and λi(H
k) = λ̃i(H

k) if γi ̸= 1. When the first set of signals are released, beliefs update

as in the generalized DeGroot model, with agents paying attention only to informed neighbors

bi,t+1 =

 ∅ if J ti = ∅∑
j∈Jt

i
mijbj,t∑

j∈Jt
i
mij

if J ti ̸= ∅
.

After the first round of information release, and after information disseminates across the

network, there will no longer be any agents whose beliefs are an empty set. Thus, afterwards,

belief updating under this new specification becomes identical to belief updating in the initial

setup. The difference is that the first consensus c(1) is a convex combination of only the signals

released in the first information round, excluding the initial consensus c(0).

We have now laid the groundwork for analyzing whether wisdom persists in a sequential-

information-arrival setting. We can do so both for the initial and the prior-free setup.

23For more details on the structure of these networks, see Banerjee et al. (2021).
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7.2 Proofs

Proof of Proposition 2.

Assume there exists at least one information release history such that for at least two agents

i and j, maxk πiλi(H
k) > 0, and maxk πjλj(H

k) > 0. By doing so, we simply exclude trivial

cases in which beliefs are always equal to the initial consensus or cases in which only one agent

places a non-zero weight on their signal—making sequential information arrival meaningless.

Let ψ represent the mapping from agents to information-release rounds. Thus, ψ(i) maps

agents i ∈ {1, . . . , n} to their information arrival round k ∈ {1, 2, . . . , K}. Without loss of

generality, let ψ(i) < ψ(j) in the information release history in which the above assumption

holds.24 Consider the case in which si ̸= c(0). From Proposition 1 we know that after all

information has been released, in the final consensus that emerges, the weight on signal si is

K∏
z=ψ(i)+1

1−
∑
l∈γ(z)

πlλl(H
z)

 πiλi
(
Hψ(i)

)
.

Consider the alternative information release sequence in which for all l : ψ(l) > ψ(i) the new

information arrival time is set to ψ(i). Then, the new weight on signal si will be πiλi
(
Hψ(i)

)
,

an unambiguous increase, since we know that at least for j πjλj(H
(ψ(j)) was greater than 0.

There are now three cases to consider. First, if weights associated with other signals remain

unchanged, the final consensus changes since the weight on si increased, thus beliefs are not

sequencing independent. Second, if weights associated with other signals change in a way

that does not perfectly offset the change of the weight in si, leading to a change in the final

consensus, beliefs are once more not sequencing independent. Finally, consider the case in

which the weights on other signals changed in a way that perfectly offset the increase in the

weight of signal si, leading to the same c(K) consensus once more. For brevity, let the original

weights associated with each signal be denoted as αi and the new weights as α′
i. Relabel c

(0)

as sn+1 and define αn+1 := (1−
∑

i αi). Then, we know that
∑

i αisi =
∑

i α
′
isi = c(K), with

αi ̸= α′
i, and for at least one other k, αk ̸= α′

k. Define the vectors of weights for which the

convex combination of the signals leads to c(K) as follows α̃ :=
{
α :
∑

i αisi = c(K)
}
, which

is a hyperplane within the n+1 dimensional polytope. The additional constraint reduces

the dimensionality of the attainable weights from n to n − 1. Thus, we can always find a

vector of signals s′ such that
∑

i αis
′
i = c(K), and yet

∑
i α

′
is

′
i ̸= c(K), implying once more

that beliefs are not sequencing independent.

24If this is not the case simply relabel i and j or follow the process in reverse.
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Proof of proposition Proposition 3.

Let ψ represent the mapping from agents to information-release rounds. Thus, ψ(n)[i] maps

agents i ∈ {1, . . . , n} in network n, to the their information arrival round k ∈ {1, 2, . . . , K}.

Sequential DeGroot Model with Signal Conditioning

Let Sk be an element of a measurable partitions of the set of values that signals can take,

such that the intersection of each element is empty and the union of all elements is equal to

the whole set. Let

wk =

∫
1{x ∈ Sk}dF µk = E[s|s ∈ Sk]

Further define

w̃j(n) =
∑

i∈γ(n)[j]

πi(n) π̃i(n) =
πi(n)

w̃ψ(n)[i](n)

Replacing πi(n) with π̃i(n), realizing that w̃ψ(n)[i](n) is the same for all j ∈ γ(n)[i], we can

write the final consensus after a sequential release of information as

c
(K)
T (n) =

K∑
j=1

 K∏
k=j+1

1− w̃k(n)
∑

i∈γ(n)[k]

π̃i(n)λ
(k)
i (n)

 w̃j(n)
∑

i∈γ(n)[j]

π̃i(n)λ
(j)
i (n)si(n)

+
K∏
j=1

1− w̃j(n)
∑

i∈γ(n)[j]

π̃i(n)λ
(j)
i (n)

 c(0)

First, note that plimn→∞ w̃k(n) = wk. To see this, notice that
∑

i πi(n)1i∈γ(n)[k] is unbiased

for wk. Then

P

[∣∣∣ n∑
i=1

πi(n)1j∈γ(n)[k] − wk

∣∣∣ > ε

]
≤
V ar

(∑n
i=1 πi(n)1i∈γ(n)[k]

)
ε2

=
V ar

(
1i∈γ(n)[k]

)∑n
i=1 π

2
i (n)

ε2
≤
V ar

(
1i∈γ(n)[k]

)
maxi≤n πi(n)

∑n
i=1 πi(n)

ε2
→ 0

Where the last part follows from the fact that V ar
(
1i∈γ(n)[k]

)
is bounded,

∑n
i=1 πi(n) = 1

and the assumption that maxi≤n πi(n) → 0 as n→ ∞. Having re-normalized π̃i(n), note that∑
i∈γ(n)[k] π̃i(n) = 1 while still maxi∈γ(n)[k] π̃i(n) → 0 as n → ∞. Since λ

(k)
i (n) and si(n) are

independent, E
[
λ
(k)
i si(n)

]
= λ̄(k)θ. Since both are bounded within [0, 1], V ar

(
λ
(k)
i si(n)

)
≤
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1. From Lemma 1 in Golub and Jackson (2010), it follows that25

plim
n→∞

∑
i∈γ(n)[k]

π̃i(n)λ
(k)
i (n)si(n) = λ̄(k)µk

We have thus identified the probability limit of each element in c
(K)
T (n). From the properties

of probability limits it then follows that

plim
n→∞

c
(K)
T (n) =

K∑
j=1

(
K∏

k=j+1

(
1− wkλ̄

(k)
))

wjλ̄
(j)µj +

K∏
j=1

(
1− wjλ̄

(j)
)
c(0)

The above limit differs from θ for two reasons. First the weight on c(0) is nonzero, since

H is non-atomic, the probability that θ is equal to c(0) is zero. Second, note that a con-

vex combination of the conditional expectations µk with weights exactly equal to wk is

equal to the unconditional expected value of the signals E[si] =
∑K

i=1wkµk = θ, which

follows from the law of iterated expectations. However, in the expression above, these

weights are distorted. In particular, the set of signals released earlier receives weight∑K
j=1

(∏K
k=j+1

(
1− wkλ̄

(k)
))
wjλ̄

(j) ≤ wjλ̄
(j).

Sequential DeGroot Model without Signal Conditioning

Assume now that the mapping between information rounds and signals does not depend

on signal realization. Then, the assignment rule reduces to choosing a probability wk with

which signal si(n) is released in information round k. Naturally
∑K

k=1wk = 1. We maintain

the previous definitions of w̃i(n) and π̃i(n). Following identical steps as above, it is straight-

forward to see that the probability limit of w̃j(n) is ŵj, the probability of a signal being

released in information round j. The main difference from the previous specification is the

following probability limit

plim
n→∞

∑
i∈γ(n)[k]

π̃i(n)λ
(n)
i (n)si(n) = λ̄(k)θ

25The expected weight in round k is λ̄(k) since the distribution of weights is history but not network
dependent. It is straightforward to see that all results go through if we allow for network dependence, with
the minor change of λ̄(k) being replaced with whatever the expectation might be.
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Which can be shown following the same steps as before. Since the release rule can not

condition on signal realization, µk = θ ∀ k. Which leads to

plim
n→∞

c(K)(n) =

(
1−

K∏
j=1

(
1− ŵjλ̄

(j)
))

θ +
K∏
j=1

(
1− ŵjλ̄

(j)
)
c(0)

In this case, the final beliefs do not converge to the realized value θ only because the mean

of the prior c(0) has non-zero weight. Note that this will be the case even if λ
(k)
i (n) = 1 ∀i, k

and n.

Prior-free Sequential DeGroot Model with Signal Conditioning

Adopting the generalized DeGroot model implies that once the first round of signals is re-

leased, the prior is completely washed away.

As mentioned in the main text, so as to not conflate the channels of why wisdom may

fail, we assume that the network structure permits wisdom to go through in a generalized

DeGroot model.26 This implies that, the consensus reached after the first set of signals is

released converges in probability to the mean of these signals, plimn→∞ c(1) = µ1, as n→ ∞.27

After this initial release of signals there are no more uninformed agents, thus, the analysis

follows that of the sequential DeGroot model, in which we simply replace c(0) with µ1, and

effectively start the process from the second information round. Following identical steps as

in the analysis before leads to

plim
n→∞

c(K)(n) =
K∑
j=2

(
K∏

k=j+1

(
1− wkλ̄

(k)
))

wjλ̄
(j)µj +

K∏
j=2

(
1− wjλ̄

(j)
)
µ1

Which will generically not be equal to µ.28 Hence, in this case, although the mean of the

prior has washed out, beliefs do not converge to θ as the conditional means of the signals

are aggregated with distorted weights.

Prior-free Sequential DeGroot Model without Signal Conditioning

Once more, following almost identical steps as above, but realizing that when the information

26For more details on the structure of these networks see Banerjee et al. (2021).
27Note that the cardinality of γ(1) in expectation is equal to w1n. Hence, the cardinality of γ(1) increases

as n → ∞. If w1 = 0, we can simply re-define the second round as the first round, and the analysis follows
through.

28To see this, notice that the attainable space of parameters for wk and µk with the constraint that∑
wk = 1 and

∑
wkµk = µ, lies in a subset of [0, 1]2K−2. Having plimn→∞ c(K) equal to µ adds a new

constraint not implied by the previous constraints, reducing the dimensionality to 2K − 3.
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release rule can not condition on signal realization µk = θ ∀k leads to

plim
n→∞

c(K)(n) =
K∑
j=2

(
K∏

k=j+1

(
1− wkλ̄

(k)
))

wjλ̄
(j)θ +

K∏
j=2

(
1− wjλ̄

(j)
)
θ = θ

Thus, under this specification, wisdom prevails despite of the distorted weights associated

with signals on different information-release rounds. This follows since within each round,

the mean of the signals is θ.

In all above cases, the converse, that is, if maxi≤n πi converges to some value strictly

larger than 0, follows from the last part of the proof of Lemma 1 in Golub and Jackson

(2010). Converge in probability to 0 will fail for at least one of the c(k) consensuses and

consequently for the final consensus c(K).

Proof of Proposition 4.

Lemma 1. If si < sj, the maximal consensus release sequence can not have sj released

individually in information-release round k and si released individually in information-release

round k + 1.

Proof of Lemma 1.

Two Signal Case

Let πi represent the i’th value of the left eigenvector of the network matrix M . Let c(0)

represent the initial consensus, and let λi represent the weight agent i places on her signal.

Releasing only signal si in the first information-release round leads to the new consensus

c(1) = πiλisi + (1 − πiλi)c
(0). Afterwards, releasing sj in the second information-release

round leads to the following final consensus

c(2) = πjλjsj + (1− πjλj)πiλisi + (1− πjλj)(1− πiλi)c
(0)

Denote by c̃(2) the alternative final consensus reached by swapping the release time of signal

si and sj. The difference between the final consensuses will be c(2)− c̃(2) = λiπiλjπj(sj − si),

which is positive as long as sj > si. Thus, given two signals and an initial consensus c(0) it

is never optimal to release si after sj if si < sj.

General Case

Assume by contradiction that the maximal sequence has signal sj released in information-

release round k and si released in k + 1 while si < sj. Notice that regardless of what the

information release sequence from k+2 and onward is, the final consensus will be a weighted

average of the consensus c(k+1) and the signals released at k + 2 and onward. Holding fixed
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the sequence of information arrival before k and after k + 1, the problem of maximizing

c(k+1) by choosing when to release si and sj, reduces to the optimization problem with two

signals. From the results in the Two Signal Case, we know that the value of c(k+1) can

be increased by releasing si before sj, thus violating the claim that the initial sequence was

maximal. This concludes the proof of Lemma 1.

Splitting Information Sets

Consider a set J ⊆ γ(k) of agents for whom information arrives in information round k. The

effect of releasing the signals of these agents one information period earlier without joining

any other set of agents (or equivalently, the effect of releasing the signals for all agents in

γ(k) \ J and all agents in γ(z) for all z > k one period later) would shift the final consensus

from

c(K) =

 T∏
z=k+1

1−
∑
j∈γ(z)

πjλj

1−
∑
i∈γ(k)

πiλi

 c(k−1)

+
K∑

v=k+1

K∏
z=v+1

1−
∑
j∈γ(z)

πjλj

 ∑
i∈γ(v)

πiλisi +

 K∏
z=k+1

1−
∑
j∈γ(z)

πiλi

 ∑
i∈γ(k)

πiλisi

To the new final consensus c′T

c̃(K) =

 T∏
z=k+1

1−
∑
j∈γ(z)

πjλj

1−
∑

i∈γ(k)\J

πiλi

(1−∑
i∈J

πiλi

)
c(k−1)

+
K∑

v=k+1

K∏
z=v+1

1−
∑
j∈γ(z)

πjλj

 ∑
i∈γ(v)

πiλisi +

 K∏
z=k+1

1−
∑
j∈γ(z)

πiλi

 ∑
i∈γ(k)\J

πiλisi

+

 K∏
z=k+1

1−
∑
j∈γ(z)

πiλi

1−
∑

i∈γ(k)\J

πiλi

∑
i∈J

πiλisi

First, note that the weights on all other signals released at, or after k, remain unaffected.

Furthermore, since
∑N

i=1 πi = 1 and λi ≤ 1 ∀ i, it is clear that 0 < 1−
∑

i∈γ(k)\J πiλi < 1, as

long as all signals are not released in information round k and the set J does not consist of

all the agents for whom information initially arrived in round k. Hence, this shift decreases

the weight signals of agents in set J have on the final consensus. To see that this swap
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increases the weight on c(k−1) note that:1−
∑

i∈γ(k)\J

πiλi

(1−∑
i∈J

πiλi

)
= 1−

∑
i∈γ(k)

πiλi +

 ∑
i∈γ(k)\J

πiλi

(∑
i∈J

πiλi

)

As long as J is not an empty set or does not contain all elements in γ(k):1−
∑
i∈γ(k)

πiλi

 <

1−
∑

i∈γ(k)\J

πiλi

(1−∑
i∈J

πiλi

)

Furthermore, note that the increased weight of consensus c(k−1) is exactly equal to the

decreased weight on signals in J . Then, the total impact of such a shift on the weights on

the final consensus:

• Is unaffected, for signals released in information round k that are not shifted, as well

as all signals released after information round k.

• Decreases, for signals in set J .

• Increases, for all signals initially released before information round k, including the

initial consensus c(0).

Merging Information Sets

Consider the set γ(k) of agents for whom information arrives in information round k. The

effect of releasing the signals of these agents one information-release round earlier by joining

a group of agents for whom information arrives in information round k−1, can be calculated

following similar steps as above. The total impact of such a shift on the weights on the final

consensus:

• Is unaffected, for signals initially released after or on information round k.

• Increases, for all signals initially released in information round k − 1.

• Decreases, for all signals initially released before information round k − 1, including

the initial consensus c(0).

Knowing the effect that Splitting Information Sets and Merging Information Sets

have, allows us to know the effect that any relevant reshuffling of signals has.

Possible Joint Releases

Assume that under the maximal consensus release sequence, multiple signals are released in

information round k̂.
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First, it must be that all signals released in information round k̂ are greater than the

consensus c(k̂−1). Otherwise, if there was a signal si < c(k̂−1) with i ∈ γ(k̂), releasing it

earlier would increase the value of the final consensus c(K). This follows from the Splitting

Information Sets effect. The weight this signal would lose is exactly the weight at c(k̂−1)

would gain.

Second, assume that a single signal, or a group of signals, are released after the joint

release in k̂. Since all signals released in k̂ must be greater than c(k̂−1), the signals released

at k̂+1 can be merged with the signals released at k̂, thus having a Merging Information

Sets effect. This boosts the weight of the signals at k̂ and decreases the weight of the

consensus at c(k̂−1) by exactly the same amount. This would lead to an increase in the final

consensus, thus contradicting the optimality of the information release sequence.

Consequently, in the maximal consensus sequence, a joint release of signals can only occur

in the final information-release round. Furthermore, all signals released in this round must

be greater than the previous consensus.

Constructing the Maximal Consensus Sequence

From Possible Joint Releases we know that the maximal sequence either has no joint

release of signals, or if it does, it can have at most one joint release which must occur at the

last information-release round. If a joint release occurs, all signals must be greater than the

previous consensus.

Thus, γ(k) for all k ∈ {1, . . . , K − 1} must be singletons. From Lemma 1, we know that

whenever there are singleton releases, the signal si released in information round k must be

larger than the signal sj released in k − 1. This implies that for any i ∈ {1, . . . , K − 1} and

any j ∈ {1, . . . , K − 1} if si < sj then si is released earlier than sj.

Proof of Corollary 1.

Corollary 1 follows from the proof of Proposition 4 and symmetry.

Proof of proposition Proposition 5.

Once more, let the vector representing beliefs immediately after information arrival be de-

noted by b̃(k), while the vector representing beliefs after communication takes place be de-

noted by b̂(k). Let γ(k) be a predetermined set of nodes whose signals will be released in

round k. When there were enough rounds of communication for convergence to take place,

the latter beliefs were equal to b̂(k) = M∞b̃(k). We now replace M∞ with M r representing

r rounds of communication between information release. Define the beginning of the period

32



beliefs as follows:

b̃
(k)
i =

{
(1− λi) b̂

(k−1)
i + λisi if i ∈ γ(k)

b̂
(k−1)
i if i ̸∈ γ(k)

The difference from equation (2) is that we no longer assume a consensus has been reached.

Note that b̃
(k)
i is continuous in all of its components. We can express the end-of-communication

beliefs of agent i as

b̂
(k)
i =

∑
j

[M r]ij b̃
(k)
j

Where [M r]ij represents the entry in row i and column j of matrix M r. Note that b̂
(k)
i as a

function of these entries, is continuous in each [M r]ij coefficient, as well as in b̃
(k)
j . Consider

the diagonal decomposition of matrix M r

M r = Π−1Λ̃rΠ

Where Λ̃ is a diagonal matrix, with entry (i, j) equal to the i’th eigenvalue. While Π

represents the matrix of left-hand eigenvectors of M 29. It then follows that

[M r]ij = πj +
∑
k≥2

λrkπ
−1
ik πkj

Since we can think of M as a transition matrix of an ergodic Markov chain we have λ1 =

1 ≥ λ2 · · · ≥ λn. Hence, the difference between [M r]ij and πj goes to 0 exponentially in

r. Thus, for any given ε̃ > 0, we can find a rε̃ large enough such that
∣∣ [M rε̃ ]ij − πj

∣∣ < ε̃

for all (i, j). Consequently, given some release sequence γ, a vector of weights agents place

on their private signals λ, a vector of initial beliefs b̃(0), and a network matrix M , for any

given ε > 0, we can find a r̃ large enough such that
∣∣cT (γ, r = ∞)− cT (γ, r ≥ r̃)

∣∣ < ε. This

follows from the continuity of b̃(k) and b̂(k), as well as from the fact that M r converges to a

constant stochastic matrix as r increases. Hence, given an maximal release sequence γ∗ that

maximized c(K) under r = ∞ we had

c(K)(γ∗, r = ∞) > c(K)(γ′, r = ∞) ∀ γ′ ̸= γ∗

29See Jackson (2010) for further discussion and intuition behind the link between the speed of convergence
and eigenvalues.
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Then, for r̃ large enough

c(K)(γ∗, r ≥ r̃) > c(K)(γ′, r ≥ r̃) ∀ γ′ ̸= γ∗

Thus, although we identify the maximal release sequence for r = ∞, this release sequence

will be maximal for all cases in which r ≥ r̃, where the exact value of r̃ depends on the

network structure.

Proof of proposition Proposition 6.

Associated with each agent i in matrix n is a signal si(n). For the purposes of this proof

we can assume that s(n) is a sequence of signals bounded within [0, 1]. Let γ be some

rule mapping {1, . . . , K} information-release rounds to the {1, . . . , n} agents. In particular

γ(n)[k] represents the group of agents for whom information arrives in information round k in

network n. Let ψ represent the mapping from agents to information-release rounds according

to the aforementioned sequence. Thus, ψ(n)[i] maps agents i ∈ {1, . . . , n} in network n, to

the k ∈ {1, 2, . . . , K} release rounds. Define

s(n)[k] := min
i∈γ(n)[k]

si(n) s(n)[k] := max
i∈γ(n)[k]

si(n)

s(n)[k] and s(n)[k] represent the lowest and highest signal released in information round k

in network n. Define

W̌ (n)[k, z] :=
∑

i∈γ(n)[k]:si(n)≤z

πi(n)λi(n) w̃(n)[k, z] :=
∑

i∈γ(n)[k]:si(n)>z

πi(n)λi(n)

W̌ (n)[k, z] and w̃(n)[j, z] represents the impact of signals released in information round k in

network n, with values lower than z and higher than z respectively. Where by impact of a

signal we refer to the influence of the agent receiving it πi(n) multiplied by the value this

agent assigns to the signal λi(n). Let j < k and further define

W̄ (n)[k, j] := max
z(n)[k,j]∈[s(n)[k],s̄(n)[j]]

{
min

{
w̃(n)[j, z] , W̌ (n)[k, z]

}}
In network n, W̄ (n)[k, j] is either equal to the impact that signals released in round k have,

with signal values lower than z∗(n)[k, j], or it’s equal to the impact that signals released

in round j have, with signal values larger than z∗(n)[k, j], whichever value is smaller. In

particular, z∗(n)[k, j] is the argument that maximizes this value. Note that z(n)[k, j] ∈
[s(n)[k], s̄(n)[j]], thus, we are interested in the value of signals that are lower than the
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highest signal released in round j, but larger than the lowest signal released in round k.

W̄ (n) := max
j,k

W̄ (n)[k, j] ∀j < k, k ∈ {1, . . . , K}

That is, among all pairings k and j, W̄ (n) chooses the ones for whom the impact of the

overlapping signals is the highest. Associated with W̄ (n) are j∗(n) and k∗(n), which are the

arguments that maximize the function above, as well as z∗(n) which is the argument that

maximizes W̄ (n)[k∗(n), j∗(n)]. Note that if W̄ (n) = 0 then released signals are all sorted,

such that the lowest signal released in any round k must be larger than the highest signal

released in round k − 1. Define

Ǩ(n) := {i ∈ γ(n)[k∗(n)] : si(n) ≤ z∗(n)} K̂(n) := {i ∈ γ(n)[j∗(n)] : si(n) > z∗(n)}

For network n, K̂(n) and Ǩ(n) represent the set of agents whose signals are released in

round k∗(n) or j∗(n), with values smaller than or lower than z∗(n) respectively. Note that

since maxi∈{1,...,n} πi(n) → 0 as n→ ∞, if #K̂(n) and #Ǩ(n) do not increase W̄ (n) → 0. In

what follows without loss of generality assume that w̃(n)[j∗(n), z∗(n)] ≤ W̌ (n)[k∗(n), z∗(n)].

Define

K̃(n) :=

{
{i} : {i} ∈ arg min

{i}∈Ǩ(n){
w̃(n)[j∗(n), z∗(n)]−

∑
i πi(n)λi(n) if

∑
i πi(n)λi(n) ≤ w̃(n)[j∗(n), z∗(n)]

2maxi πi(n) otherwise

}}

Hence, K̃(n) is the subset of elements in Ǩ(n) whose influence most closely approximates

the value W̌ (n)[j∗(n), z∗(n)] from below. To see this, note that

△(n) := w̃(n)[j∗(n), z∗(n)]−
∑
i∈K̃(n)

πi(n)λi(n) ≤ max
i
πi(n)

If this was not the case, then K̃(n) would include at least one more element from Ǩ(n).

Now, consider the consequence of swapping the release time of elements in K̃(n) with those

of elements in K̂(n). Denote the initial final consensus as c(K)(n), and let this swap lead to
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the new final consensus c̃(K)(n). Then we have

c̃(K)(n)− c(K)(n) =

−△(n)

 ∑
k∈γ(n)[k∗(n)]:k ̸∈K̃(n)

πk(n)λk(n)−
∑

j∈γ(n)[j∗(n)]:j ̸∈K̂(n)

πj(n)λj(n)


×

 ∏
m̸∈{j∗(n),k∗(n)}

(
1−

∑
m

πm(n)λm(n)

) c(0)

−△(n)

 ∑
k∈γ(n)[k∗(n)]:k ̸∈K̃(n)

πk(n)λk(n)−
∑

j∈γ(n)[j∗(n)]:j ̸∈K̂(n)

πj(n)λj(n)


×

 ∑
r<j∗(n)

 ∏
m>r:m̸={j∗(n),k∗(n)}

(
1−

∑
m

πm(n)λm(n)

)∑
r

πr(n)λr(n)sr(n)


−△(n)

 ∑
j∗(n)<r<k∗(n)

 ∏
m>r:m̸=k∗(n)

(
1−

∑
m

πm(n)λm(n)

)∑
r

πr(n)λr(n)sr(n)


−△(n)

 ∏
m>j∗(n):m̸=k∗(n)

(
1−

∑
m

πm(n)λm(n)

) ∑
j∈γ(n)[j∗(n)]

πj(n)λj(n)sj(n)

+

 ∑
j∈K̂(n)

πj(n)λj(n)sj(n)−
∑

k∈K̃(n)

πk(n)λk(n)sk(n)

 ∏
m>k∗(n)

(
1−

∑
m

πm(n)λm(n)

)
1−

 ∏
j∗(n)<m<k∗(n)

(
1−

∑
m

πm(n)λm(n)

)
1−

∑
v∈{K̂(n)∪γ(n)[k∗(n)]\K̃(n)}

πv(n)λv(n)




All terms, besides the last, are multiplied by △(n). All parts multiplying △(n) are weighted

convex combinations of the prior and signals, which lie in a bounded set, thus, they them-

selves are bounded. Since △(n) ≤ maxi πi(n), and since maxi πi(n) → 0 as n→ ∞, all terms

but the final term converge to 0 as n→ ∞. Focusing on the last term, since
∑n

i=1 πi(n) = 1

and since ∀ i and ∀ n λi(n) ≤ 1, it is straightforward to see that the last three multiplicative

parts are greater than 0. While the following inequality holds for the first part of the last
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term ∑
j∈K̂(n)

πj(n)λj(n)sj(n) >
∑

j∈K̂(n)

πj(n)λj(n)z
∗(n)

≥
∑

j∈K̃(n)

πj(n)λj(n)z
∗(n) ≥

∑
k∈K̃(n)

πk(n)λk(n)sk(n)

The first inequality follows from the definition of K̂(n), since each element in K̂(n) is larger

than z∗(n). The second inequality follows from the definition of K̃(n), since it approximates

the influence of signals in K̂(n) from below. The third inequality follows from the fact that

each element in K̃(n) is drawn from Ǩ(n). By definition, each signal associated with each

element in the later set has value lower than or equal to z∗(n). Hence, under the assumption

that in the initial sequence the intersection of the range of signals released in different periods

is not empty, the last term is bounded away from 0, which leads to

lim
n→∞

c̃(K)(n)− c(K)(n) > 0

Thus, as n → ∞, if there is overlap between signal values released in different rounds, the

final consensus can be increased by shifting signals with lower values to earlier information-

release rounds, and shifting signals with higher values to later information-release rounds.

Since this improves the final consensus for any sequence, it can not be that the maximal

consensus release sequence has overlapping signals.

Proof of proposition Proposition 7.

We show that E [c̄(π, λ, s)] is maximized with uniform influences. That E [c(π, λ, s)] is min-

imized for uniform influences will follow from symmetry, implying that the gap will be

maximized under uniform influences.

From Proposition 4, it follows that for any realization of signals and weights agents place

on their signals, the maximal sequence is one of n possible sequences. These n sequences

release information in a monotonic manner, starting with the lowest signal. The difference

between the sequences is a round k ∈ {0, 1, . . . , n − 1}, after which all remaining signals

are released jointly. Denote such a sequence that releases signals monotonically up to k,

and jointly releases all signals afterwards by γ(k). Since λi are independently drawn, and

since each one enters linearly in the final consensus, in expectation, we can replace all

λi with the mean of their distribution, denoted by λ̄. Since the sequence being analyzed

releases information monotonically, the expected value of signals released in the first round

is simply the first-order statistic of the distribution of signals S(1). This follows all the way

to k, after which the last n − k signals are released, which in expectation are equal to the
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S(k), S(k+1), . . . , S(n) order statistics of the distribution of signals. Then, the expected final

consensus under the γ(k) information release sequence is

E
[
c(k+1)(γ(k), π, λ, s)

]
= E

1−
∑

i∈γ(k)(k+1)

πiλi

 k∑
j=1

(
k∏

z=j+1

(1− πzλz)

)
πjλjsj

+
∑

j∈γ(k)(k+1)

πjλjsj +

1−
∑

i∈γ(k)(k+1)

πiλi

 k∏
z=1

(1− πzλz) c
(0)


=E

1−
∑

i∈γ(k)(k+1)

π̃iλ̄

 k∑
j=1

(
k∏

z=j+1

(
1− π̃zλ̄

))
π̃j

 λ̄S(j)

+
n∑

j=k+1

E [π̃j] λ̄S(j) + E

1−
∑

i∈γ(k)(k+1)

π̃iλ̄

 k∏
z=1

(
1− π̃zλ̄

) c(0)
Where c(0) is the initial consensus. Although the influence values πi are deterministic, ex-ante

we do not know which signal they will be associated with. Thus, given a particular sequence,

from an ex-ante point of view, after taking expectations, the only remaining uncertainty is

with regard to the πi values associated to each order statistic. Hence, we can continue the

analysis as if λi = λ̄ and the order statistics S(i) are fixed, while the πi values vary. Let

π = {π1, . . . , πn} represent the vector of influence values that can be associated with the

order statistics, and let π̃i represent the realized value associated with order statistic i. That

is, π̃i associated with order statistic i ∈ {1, 2 . . . , n}, are drawn from π uniformly without

replacement. Let a special case of the influence vector be denoted as πu = {1/n, 1/n, · · · , 1/n},
where u stands for uniform. Let another special case of the influence vector be denoted as

πf = {1, 0, . . . , 0} where f stands for focused. The particular coordinate of the weight 1

influence value is irrelevant. Let p(πi) represent the probability that the realized value of

π̃n = πi. First, note that

p(πi) =
1

n
E[π̃n] =

n∑
i=1

p(πi)πi =
n∑
i=1

1

n
πi =

1

n

We have p(πi) = 1
n
since each value is equally likely to be associated with the n’th order

statistic. As can be seen, the expected influence values associated with signal released in the

last round (k + 1) is E [π̃n] =
1
n
. Since the expected weight these signals have on the final

consensus is E[π̃n]λ̄, this weight remains unaffected regardless of the distribution of influences
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in the π vector. On the other hand, the weight associated with the k order statistic is

E

[(
1−

n∑
i=k+1

π̃iλ̄

)
π̃k

]
λ̄ =

(
E [π̃k]−

n∑
i=k+1

E [π̃kπ̃i] λ̄

)
λ̄

=

(
1

n
−

n∑
i=k+1

E [π̃kπ̃i] λ̄

)
λ̄

To calculate E [π̃kπ̃i] we define30

p(πi, πj) =

{
1

n(n−1)
if πi ̸= πj

0 if πi = πj

E[π̃kπ̃i] =
n∑
i=1

∑
j ̸=i

p(πi, πj)πiπj =
n∑
i=1

∑
j ̸=i

1

n(n− 1)
πiπj

=
n∑
i=1

n∑
j=1

1

n(n− 1)
πiπj −

n∑
i=1

1

n(n− 1)
π2
i

=
1

n(n− 1)

n∑
i=1

πi

n∑
j=1

πj −
1

n(n− 1)

n∑
i=1

π2
i =

1

n(n− 1)
− 1

n(n− 1)

n∑
i=1

π2
i

Since π2
i is a convex function, and the condition

∑n
i=1 πi = 1 has to be satisfied,

∑n
i=1 π

2
i is

minimized when πi =
1
n
∀ i, and maximized when πj = 1 for some j and πi = 0 for all i ̸= j.

Consequently E[π̃kπ̃i] ∈
[
0, 1

n2

]
, hence, the weight placed on the k’th order statistic is within[

n−(n−k)λ̄
n2 λ̄, 1

n
λ̄
]
. The weight placed on the k − 1 order statistic is

E

[(
1−

n∑
i=k+1

π̃iλ̄

)(
1− π̃kλ̄

)
π̃k−1

]
λ̄

=

(
E [π̃k−1]−

n∑
i=k

E [π̃kπ̃i] λ̄+
n∑

j=k+1

E [π̃k−1π̃kπ̃j] λ̄
2

)
λ̄

To calculate E [π̃k−1π̃kπ̃j] we define

p(πi, πj, πk) =

{
1

n(n−1)(n−2)
if πi ̸= πj ̸= πk

0 otherwise

30With a slight abuse of notation, πi ̸= πj does not exclude the possibility that these values are equal.
Rather, it excludes the possibility of choosing the same πi for two different signals, which follows from the
fact that we draw without replacement.
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E[π̃k−1π̃kπ̃j] =
n∑
i=1

∑
j ̸=i

∑
k ̸={i,j}

p(πi, πj, πk)πi =
n∑
i=1

∑
j ̸=i

∑
k ̸={i,j}

1

n(n− 1)(n− 2)
πiπjπk

=
n∑
i=1

n∑
j=1

n∑
k=1

1

n(n− 1)(n− 2)
πiπjπk −

1

n(n− 1)(n− 2)

(
3

n∑
i=1

π2
i − 2

n∑
i=1

π3
i

)

=
1

n(n− 1)(n− 2)
− 1

n(n− 1)(n− 2)

(
3

n∑
i=1

π2
i − 2

n∑
i=1

π3
i

)

Once more, the highest value (3
∑n

i=1 π
2
i − 2

∑n
i=1 π

3
i ) = 1 is achieved when πi = 1 for some

i and πj = 0 ∀ j ̸= i, while the lowest value (3
∑n

i=1 π
2
i − 2

∑n
i=1 π

3
i ) =

3n−2
n2 is achieved when

πi =
1
n
∀ i. Thus, E[π̃k−1π̃kπ̃j] ∈

[
0, 1

n3

]
, and so, the weight placed on the k−1 order statistic

is within
[
(n−λ̄)(n(1−λ̄)+kλ̄)

n3 λ̄, 1
n
λ̄
]
. Continuing in this fashion, it is straightforward to show

that the weight on the j’th order statistic, for any j ≤ k, will fall within an interval bounded

from below when πi =
1
n
∀ i, and bounded from above when πi = 1 for some i and 0 for all

j ̸= i.31 The weight on each order statistic can be at most λ̄/n, but will be lower if information

is released sequentially and π ̸= πf . Note that E
[
c(k+1)

(
γ(0), π

)]
= E

[
c(k+1)

(
γ(k), πf

)]
∀k,

that is, for a given π, releasing all information jointly generates the same final consensus as

any order of information release under πf . Furthermore, for all j ≤ k, the weight on the j’th

order statistic can be written as 1
n
−ψj(π). Where by how much the weight on the j’th order

statistic is reduced ψj(π) depends on the vector π. Again, ψj(π) = 0 under πf , while it is

maximized under πu, where πf and πu are as defined above. Since the weight on all order

statistics and the initial prior sums up to one, this weight reduction is directly transferred

to the initial prior. Then, for a information release rule γ(k) and vector of influences π, we

can write the expected final consensus as

E
[
c(k+1)

(
γ(k), π

)]
= E

[
c(k+1)

(
γ(0), π

)]
+

k∑
i=1

ψi(π)
(
c(0) − S(i)

)
For the special case of π = πu we write the final consensus as

E
[
c(k+1)

(
γ(k), πu

)]
= E

[
c(k+1)

(
γ(0), πu

)]
+

k∑
i=1

ϕi
(
c(0) − S(i)

)
Where ϕi = ψi(πu). From the arguments above we know that ϕi ≥ ψi(π) ∀ i and for all π.

From the arguments above we also know that E
[
c(k+1)

(
γ(0), π

)]
= E

[
c(k+1)

(
γ(0), πu

)]
, since,

when all information is released jointly, the weight on each order statistic will be λ̄/n regard-

31In the special case of k = n− 1, where each signal is released in a separate round, it is straightforward

to see that the weight placed on the j’th order statistic will be within
[
(n−λ̄)n−j

nn−j+1 λ̄, 1
n λ̄
]
.
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less of the vector π. It then follows that E
[
c(k+1)

(
γ(k), π

)]
differs from E

[
c(k+1)

(
γ(k), πu

)]
only through the difference in the ψi(π) and ϕi weights, with the later being larger. From

Proposition 4 we know that in the maximal release sequence γ(k
∗), the signal of agent i

is released sequentially only if si < c(0). Thus, under γ(k
∗), c(0) − S(i) > 0 for i ≤ k∗.

Consequently, as the ψi(π) values increase, so does the value of E
[
c(k+1)

(
γ(k

∗), π
)]
. Hence,

E
[
c(k+1)

(
γ(k

∗), π
)]

is maximized under π = πu. By symmetry and Corollary 1, we know

that the expected minimal final consensus is also minimized under π = πu. Therefore, the

expected gap between the maximal and minimal final consensus is maximized under π = πu.

From the fact that E
[
c(k+1)

(
γ(k), πf

)]
= E

[
c(k+1)

(
γ(0), πf

)]
, and that this holds for the

miniimal sequence as well, it follows that the expected gap shrinks to 0 as maxi πi → 1.
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