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1 Interface

1.1 Low Information Treatment Interface

The interface seen by participants in the Low Information treatment is shown in Figure 1,
with additional text explaining what each component represents(not seen by the partici-
pants).

Figure 1: Details of Low Information Treatment Interface

Time Bar  - Measuring down 
the 4 rounds for which the 
signal will be displayed.

Instructions Button - On 
adds a description under 
each element in the inter-
face.

Round Tracker  - Light grey 
squares depicts rounds that have 
ended. Information arrival rounds 
are depicted by squares with an 
orange outline. The current 
round is depicted by the most 
recent white square with the 
additional arrows. This snapshot 
has been taken in round 14.

Own Previous Guess  - The 
participant’s own last round 
guess.

Input Field  - The space in 
which the participant 
inputs their current guess.

Common Signal  - The common 
signal is displayed from round 1 
through round 4. For the remaining 
rounds the tick sign takes it’s place.

B’s Last period guess -
Visible to participant A. 

B’s Guess two periods ago  
- Visible to participant A.

Own Signal  - Participant’s 
own signal.

B’s Signal - Only visible to 
player B.

Game Tracker  - Keeps track 
of the current game, from 1 
to 8.

1.2 High Information Treatment Interface
The interface seen by participants in the High Information treatment is shown in Figure 2.

Figure 2: Details of High Information Treatment Interface

Signal Indicator - Partici-
pants are explicidly 
informed about the identity 
of the signal recepient.

Other members guesses - 
The participant can see the 
last period, as well as two 
period ago guesses of all 
other members. However, 
their private signals are still 
unobservable.

Own Signal - Before the 
participant’s own signal 
arrives they see a hourglass 
symbol, indicating that they 
still have to wait for their 
signal.
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1.3 Instructions

Instructions were read out loud, and participants could ask clarifying questions throughout.

Slides shown in section 1.3.2 and section 1.3.3 went through all relevant rounds from 1 to

40; thus, only a subset is presented here.

1.3.1 Common Instructions for both Treatments

Welcome to

1

Welcome

• Welcome to PExL and thank you for participating in today’s experiment.
• Please place all of your personal belongings away so that we can have your complete
attention.

• Please use the laptops as instructed. In particular, please do not attempt to browse the web
or use programs unrelated to the experiment.

2

Guidelines

• You will be paid in private and in cash at the end of the experiment.
• The amount that you ultimately earn in the experiment depends on your decisions and
random chance. You have each earned a $10 payment for showing up on time.

• You will be using laptops for the entire experiment, and all interactions between yourself
and others will take place via the laptop’s terminal.

• Please DO NOT socialize or talk during the experiment.

3

Number of Games and Rounds

You will play a total of 8 games. Within each game there are 40 rounds.

4

“The Truth”

At the beginning of each game some integer x is drawn from a representative uniform
distribution [0,1000].

Let’s call this number x “the truth.”

Here are a few examples of possible values that x can take:

x = { 690 , 893 , 132 , 504 , 221 , 914 , 351 , 67 , 758 , 435 ... }

One such value will be selected for each game.

5

The Goal

At the beginning of each game you will be matched with 3 other participants. Your goal is to
figure out “the truth” (the value of x).

You will be assigned a letter A, B, C or D. This letter will remain unchanged throughout all games.

6

The Common Signal

In round 1, all four participants in the group will receive a common signal.
This signal is the same for all four participants in the group

This signal is drawn from a representative normal distribution with a standard deviation of 30
around “the truth.” That is to say, the truth is somewhat close to this signal.

As an example let’s say the value of x is 772. Examples of possible values for the common signal
are:

Scom = { 779 , 793 , 724 , 793 , 773 , 814 , 749 , 722 , 810 , 805 ... }

As can be seen, although Scom is not quite equal to x it is a good indicator of what the value of x
might be.

7

Private Signals

In addition to the common signal, each participant will also receive a private signal.

Participant A receives private signal SA
Participant B receives private signal SB
Participant C receives private signal SC
Participant D receives private signal SD.

Unlike the common signal, these signals are privately observed by the receivers.

These signals are also drawn from a representative normal distribution with a standard
deviation of 30 around “the truth” . That is to say, the truth is somewhat close to this signal.

8

Normal Distribution: Standard Deviation=30

290 320 350

68%

95%

380 410

9

Examples

Here are some examples of possible values of “the truth” x , the common signal Scom, as well as
the private signals SA , SB , SC, and SD:

Example 1: x = 895 Scom = 914 SA = 841 SB = 926 SC = 920 SD = 888

Example 2: x = 389 Scom = 438 SA = 398 SB = 412 SC = 379 SD = 370

Example 3: x = 781 Scom = 735 SA = 757 SB = 755 SC = 781 SD = 807

Example 4: x = 161 Scom = 128 SA = 113 SB = 169 SC = 92 SD = 193

Each one of the signals, the private ones and the common signal, are equally precise.

10

Private Signal Arrival

Unlike the common signal, that will always arrive on round 1, the private signals arrive in rounds
5, 13, 21 or 29. We will call these rounds the “signal rounds.”

You will be told exactly when each member receives their private signal.

• In 6 out of 8 games one signal arrives in round 5, one signal arrives in round 13, one signal
arrives in round 19 and one signal arrives in round 23.

• In 2 out of 8 games all private signals arrive in round 5.

11

Payment

• You will be paid for three randomly chosen games. Within these games, a single round will
be chosen randomly for the payment.

• Your payment will be calculated as follows:

payment = $10− 1
4 · | guess− truth |

• Simply put, the closer your guess is to the truth, the higher your payment will be.

12

1.3.2 Remaining Low Information Treatment Instructions

The Interface

13

The Interface

13

The Interface

13
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The Interface

13

The Interface

13

The Interface

13

The Interface

13

The Interface

13

The Interface

13

Let the Experiment Begin!

If there are no questions, we will now begin the actual experiment.

14

1.3.3 Remaining High Information Treatment Instructions

The Interface

13

The Interface

13

The Interface

13

The Interface

13

The Interface

13

The Interface

13

The Interface

13

The Interface

13

The Interface

13
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The Interface

What about cases where all information arrives jointly?

14

The Interface

15

The Interface

15

The Interface

15

Let the Experiment Begin!

If there are no questions, we will now begin the actual experiment.

16

2 Related Data Analysis

2.1 Optimal Guess given a Signal

Because the values θ can take are bounded between 0 and 1000, although signals are unbiased,

if the signal value goes beyond these boundaries (or is close to them), the expected conditional

θ value is no longer equal to the signal realization, E [θ|s] ̸= s. The graph below plots the

optimal guess conditional on a realized signal.

Figure 3: Noisy Bayesian Behavior

0 100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

500

600

700

800

900

1000

Signal

As emphasized in the main text, since the realized value of θ plays no role in the identifi-

cation, its values are drawn once and set to {455, 793, 312, 126, 202, 871, 312, 644, 542}. The
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lowest of these values is 126, while the highest is 871. Thus, all values are substantially away

from the boundaries so as to make deviations of E [θ|s] from the 45-degree line imperceptible.

2.2 Particiapnts’ Mistakes

In some cases, it is rather clear that participants make mistakes. For example, consider a

participant who, in rounds 20 through 25, inputs the following values {875, 875, 875, 87, 875}.
Clearly, the 87 value was inputted by mistake. We want to deal with these cases to ensure

that the results we capture are not driven by such mistakes.

Recall from the main text that the expected range for five normally distributed signals

with a standard deviation of 30 is approximately 70. Thus, guesses are rarely, if ever,

expected to change for more than 75 points. For each participant in each game, we calculate

the mean guesses and replace a guess gi,t with a guess from one round before gi,t−1 if the

difference from gi,t and the mean is greater than 75(above or below). Thus, we allow for

more than twice the expected range in the inputted guesses. This data cleaning procedure

would have flagged the 87 value in the above example and would have replaced it with the

value inputted one round before, namely 875.

This procedure affects a total of 157 observations out of 20480. We find that results

remain qualitatively unchanged if we leave these observations unchanged, replace them with

the previous round observations (as we do), or drop them altogether. All things considered,

we remain confident that a few mistakes participants make are not the driving force of any

of the results we highlight.

2.3 Noisy Bayesian Behavior

In the main text we presented the behavior of Bayesian agents faced with the exact data

utilized in the lab. This revealed that, regardless of which sequence pairing we looked at,

the final beliefs converged to the same point. Thus, the timing and order of signals played

no role in the final beliefs that emerged. However, it seems natural to see how behavior

looks for Bayesian agents that might make mistakes (implementation errors). The goal of

this section is to see whether errors alone can account for the documented differences. We

simulate Bayesian noisy behavior by adding implementation error on the signal incorporation

weights (λi,t weights), as well as on the weights placed on others’ observable actions (mi,j

weights). The graph below presents the average results for the matched sequences in the

fully connected network.
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Figure 4: Noisy Bayesian Behavior
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To construct the above graphs, we follow the same methodology as in Section 4.1 in the main text. The only
difference is the added implementation noise on the signal incorporating weights and on the weights placed
on others observable choices.

As can be seen, results look almost indistinguishable from the Bayesian behavior with no

noise. Importantly, on average, the final beliefs from upward sequences converge to the same

level as the final beliefs from the downward sequences, even with noisy implementations.

In the graph above, errors are normally distributed with a standard deviation of 0.15 (note

that the weights often deviate by as much as 0.40). Considering that these weights can be

between 0 and 1, this is an astonishing amount of implementation error, yet, we still see

no differences on average from the Bayesian behavior. Results remain unchanged even for

higher error levels, and naturally, results remain unchanged when we reduce implementation

errors.

Following the same procedure in the ring network leads to the same results. Regardless

of the amount of implementation noise, we fail to generate a gap in the final beliefs. Thus,

the observed gap between the upward and downward sequences can not be an artifact of

noisy implementation.

2.4 Additional Sequence Influence Regressions

To make sure that the statistical significance documented in Table 2 in the main text is

not driven by pooling the observed data across different rounds, Table 1 reports a regression

utilizing only data in the 36th round, which had the lowest fixed effect. As can be seen, once

again, the results are highly statistically significant. Almost identical results are obtained if
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instead only data from the 32nd, 33rd, 34th, or the 35th round are utilized.

Table 1: Sequence Influence

△Guess: Round 36
(No Cluster) (Individual Cluster) (Group Cluster)

Constant 6.854∗∗∗ 6.854∗∗∗ 6.854∗∗∗

(0.000) (0.000) (0.000)
Sequential -0.194 -0.194 -0.194

(0.913) (0.884) (0.932)
Low Info -1.171 -1.171 -1.171

(0.523) (0.545) (0.663)
Sequential × Low Info 0.488 0.488 0.488

(0.851) (0.850) (0.899)
N 544 544 544

p-values in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Once more, the main effect captured by the constant is statistically significant, whereas

the difference between the treatments and the sequences seems not to be statistically different

from zero. On the other hand Table 2 presents a regression utilizing only the last four rounds.

Table 2: Sequence Influence

△Guess: Round 37-40
(No Cluster) (Individual Cluster) (Group Cluster)

Constant 6.789∗∗∗ 6.789∗∗∗ 6.789∗∗∗

(0.000) (0.000) (0.000)
Sequential 0.302 0.302 0.302

(0.740) (0.795) (0.886)
Low Info -0.354 -0.354 -0.354

(0.706) (0.836) (0.884)
Sequential × Low info -3.809∗∗∗ -3.809 -3.809

(0.004) (0.149) (0.287)
Round Fixed Effects Yes Yes Yes
N 2176 2176 2176

p-values in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

None of the round fixed effects appear statistically significant.

2.5 The Weight of Early and Delayed Signals

The table below reports the same regression as in Table 2 in the main text while utilizing

only data from round 36.
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Table 3: Weight on Signals: Round 36

Guess
Low Information Treatment High Information Treatment

(No C) (Individual C) (Group C) (No C) (Individual C) (Group C)
Sc 0.293∗∗∗ 0.293∗∗∗ 0.293∗∗∗ 0.230∗∗∗ 0.230∗∗∗ 0.230∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Si 0.149∗∗∗ 0.149∗∗∗ 0.149∗∗∗ 0.156∗∗∗ 0.156∗∗∗ 0.156∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
AdditionalWeight 0.0542∗∗∗ 0.0542∗∗∗ 0.0542∗∗ 0.0729∗∗∗ 0.0729∗∗∗ 0.0729∗∗∗

(0.002) (0.001) (0.017) (0.000) (0.000) (0.000)
N 384 384 384 432 432 432

p-values in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

As can be seen, although some statistical power is lost by utilizing a smaller fraction

of the data, the sign and statistical significance of the Additional Weight variable remains

unchanged. Similar values are derived for any of the relevant rounds.

2.6 Weight on the Common Signal

Below we present the full regression table, a part of which was presented on Table 3 in

the main text. In the regression below, S corresponds to the signal the participant receives,

whereas SNi corresponds to the signal i’th indirect neighbor of the participant receives. As

was the case in the main text, Sc corresponds to the common signal; SEQ is an indicator

variable equal to one if the data comes from a game in which information was released

sequentially, while HIT is an indicator variable equal to one if the data comes from the high

information treatment. SIM is simply 1− SEQ.

It would be natural to suspect that, to some extent, the greatly exaggerated influence

of the common signal, as depicted in Figure 4 in the main text, is driven by the low

Information treatment, in which, perhaps, participants could not deduce that they are in a

round in which all information was released jointly in round 5. If this was the case, then had

participants known that all information was released in round 5, they would have done a much

better job in discounting the common signal, and thus, its weight would not have been so

greatly exaggerated. However, in the high information treatment, when information arrives

simultaneously, participants are explicitly informed that all signals have arrived jointly. In

this treatment, they can clearly see that all other participants have received their signals in

round 5. Hence, if it was improper deduction with regard to being in a sequential information

release round versus a joint information release round, this effect should not exist in the high

Information treatment. Figure 5 shows the influence that the common signal has in each

round in the low Information treatment (on the left) and in the high Information treatment

(on the right), in rounds in which all signals were released jointly.
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Table 4: Weight on Common Signal - Full Regression

Guess : Round 32-36 Guess : Round 36

(No C) (Individual C) (Group C) (No C) (Individual C) (Group C)

Sc 0.412∗∗∗ 0.412∗∗∗ 0.412∗∗∗ 0.385∗∗∗ 0.385∗∗∗ 0.385∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Sc × SIM ×HIT -0.0677∗∗∗ -0.0677∗∗ -0.0677 -0.0409 -0.0409 -0.0409

(0.000) (0.025) (0.159) (0.210) (0.235) (0.429)
Sc × SEQ -0.159∗∗∗ -0.159∗∗∗ -0.159∗∗∗ -0.122∗∗∗ -0.122∗∗∗ -0.122∗∗

(0.000) (0.000) (0.001) (0.000) (0.001) (0.014)
Sc × SEQ×HIT -0.0737∗∗∗ -0.0737∗∗∗ -0.0737∗∗ -0.0716∗∗ -0.0716∗∗ -0.0716∗

(0.000) (0.006) (0.032) (0.015) (0.012) (0.052)

S × SEQ× LIT 0.331∗∗∗ 0.331∗∗∗ 0.331∗∗∗ 0.300∗∗∗ 0.300∗∗∗ 0.300∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
S × SIM × LIT 0.224∗∗∗ 0.224∗∗∗ 0.224∗∗∗ 0.244∗∗∗ 0.244∗∗∗ 0.244∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
S × SEQ×HIT 0.277∗∗∗ 0.277∗∗∗ 0.277∗∗∗ 0.270∗∗∗ 0.270∗∗∗ 0.270∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
S × SIM ×HIT 0.228∗∗∗ 0.228∗∗∗ 0.228∗∗∗ 0.217∗∗∗ 0.217∗∗∗ 0.217∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
SN1 × SEQ× LIT 0.230∗∗∗ 0.230∗∗∗ 0.230∗∗∗ 0.233∗∗∗ 0.233∗∗∗ 0.233∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
SN1 × SIM × LIT 0.185∗∗∗ 0.185∗∗∗ 0.185∗∗∗ 0.184∗∗∗ 0.184∗∗∗ 0.184∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
SN1 × SEQ×HIT 0.188∗∗∗ 0.188∗∗∗ 0.188∗∗∗ 0.188∗∗∗ 0.188∗∗∗ 0.188∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
SN1 × SIM ×HIT 0.116∗∗∗ 0.116∗∗∗ 0.116∗∗∗ 0.139∗∗∗ 0.139∗∗∗ 0.139∗∗∗

(0.000) (0.002) (0.000) (0.001) (0.001) (0.000)
SN2 × SEQ× LIT 0.122∗∗∗ 0.122∗∗∗ 0.122∗∗∗ 0.135∗∗∗ 0.135∗∗∗ 0.135∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
SN2 × SIM × LIT 0.0870∗∗∗ 0.0870∗ 0.0870∗∗ 0.0798∗∗ 0.0798∗ 0.0798∗∗

(0.000) (0.060) (0.027) (0.039) (0.095) (0.023)
SN2 × SEQ×HIT 0.167∗∗∗ 0.167∗∗∗ 0.167∗∗∗ 0.177∗∗∗ 0.177∗∗∗ 0.177∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
SN2 × SIM ×HIT 0.142∗∗∗ 0.142∗∗∗ 0.142∗∗∗ 0.149∗∗∗ 0.149∗∗∗ 0.149∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
SN3 × SEQ× LIT 0.0617∗∗∗ 0.0617∗∗∗ 0.0617∗∗∗ 0.0665∗∗∗ 0.0665∗∗∗ 0.0665∗∗∗

(0.000) (0.000) (0.000) (0.001) (0.003) (0.000)
SN3 × SIM × LIT 0.0897∗∗∗ 0.0897∗∗∗ 0.0897∗∗∗ 0.102∗∗∗ 0.102∗∗ 0.102∗∗∗

(0.000) (0.005) (0.001) (0.008) (0.016) (0.003)
SN3 × SEQ×HIT 0.188∗∗∗ 0.188∗∗∗ 0.188∗∗∗ 0.172∗∗∗ 0.172∗∗∗ 0.172∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
SN3 × SIM ×HIT 0.169∗∗∗ 0.169∗∗∗ 0.169∗∗∗ 0.150∗∗∗ 0.150∗∗∗ 0.150∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

N 5440 5440 5440 1088 1088 1088

p-values in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Figure 5: The Common Signal’s Influence by Treatment
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The graphs above represent the influence that the common signal has on the guesses in each round. The
graphs also show the 95% confidence interval of the estimated weight.
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As can be seen, in both treatments, the common signal loses a substantial amount of

influence exactly in round 5, when all the private signals are released. Afterward, this value,

to a large extent, remains unchanged.

2.7 Parameter Estimation

In both treatments, for a clear distinction between the estimated parameters, we utilize data

from games in which information was released sequentially.

Low Information Treatment To identify the weight agents place on their private signal

when it arrives, we focus on the rounds in which the agent receives a signal. We regress the

guess gi,t formed when the agent received their private signal on her previous guess gi,t−1, on

the previous guess of the neighbor she observes gk,t−1, the common signal sc and her private

signal si. The coefficient on si identifies the weight the agent places on her signal. We run

this regression separately for signals that arrive in rounds 5, 13, 21, and 29. Each column in

Table 5 corresponds to one such regression.

Table 5: λt̃ Values: Low Information Treatment

gi,t

t̃ = 5 t̃ = 13 t̃ = 21 t̃ = 29
gi,t−1 0.216∗ 0.245∗ 0.192∗ 0.384∗∗

(0.056) (0.073) (0.087) (0.012)
gj,t−1 0.0542 0.106 -0.00833 0.0476

(0.442) (0.325) (0.936) (0.697)
si 0.604∗∗∗ 0.614∗∗∗ 0.595∗∗∗ 0.539∗∗∗

(0.000) (0.000) (0.000) (0.000)
sc 0.125 0.0337 0.217∗∗∗ 0.0270

(0.349) (0.579) (0.003) (0.746)
N 96 96 96 96

p-values in parentheses

Individual-level clustering
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Thus the values of λt̂, the weights the participants place on their signals on the different

information rounds, are {0.604, 0.614, 0.595, 0.539}. Importantly, note that had we run these

regressions jointly by estimating a single coefficient for gi,t−1, gj,t−1, and sc, we would force

the estimated si parameters to be similar across rounds.1 For example, when estimating

the above parameters jointly, the estimated parameters on si are {0.584, 0.583, 0.581, 0.581},
which are much closer to one another than the values presented in Table 5. However, this

1In a joint estimation this can be avoided by interacting each variable with the round in which information
arrives. This would lead to a regression with sixteen variables, which would effectively be equivalent to the
separate regressions.
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is an anomaly of the additional, unnecessary restrictions on gi,t−1, gj,t−1, and sc. We run

each regression separately to avoid such anomalies, thus giving maximum flexibility for any

differences to show up.

We next estimate the remaining parameter values. The first column in Table 6 regresses

the guess of participant i in time t on her previous guess, her neighbor’s previous guess, her

private signal as well as the common signal, utilizing only rounds in which the participant, or

her neighbor, has not received any new information, be it directly or indirectly. This identifies

the weight agents place on their previous guess, as well as on the guess of their neighbor in

such rounds. Thus we estimate mi,i = 0.657 and mi,j = 0.248. The second column utilizes

data from rounds in which the participant’s neighbor receives information. Consequently,

the coefficient of gj,t−1 represents the weight a participant places on her neighbor when

the neighbor receives new information, while the new parameter value on gi,t−1 represents

the value the participant places on herself in such rounds. These lead to the estimation of

mi,i = 0.467 and mi,j = 0.471.

Table 6: Parameter Values: Low Information Treatment

gi,t
gi,t−1 0.657∗∗∗ 0.610∗∗∗

(0.000) (0.000)
gj,t−1 0.248∗∗∗ 0.208∗∗∗

(0.000) (0.000)
g
i,t−1

0.467∗∗∗

(0.000)
gj,t−1 0.471∗∗∗

(0.000)
si 0.0562∗∗∗ 0.0471∗∗∗ 0.130∗∗∗

(0.000) (0.000) (0.000)
sc 0.0384∗∗∗ 0.0151 0.0521∗∗∗

(0.000) (0.472) (0.000)
N 12288 1152 8256

p-values in parentheses

Individual-level clustering
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Finally, the last column in Table 6 utilizes only data from rounds after the participant

has received her private signal. Thus, the coefficient on si and sc reveal the anchoring

parameters, namely δs = 0.13 and δc = 0.0521.

High Information Treatment The estimation of the parameters in the high information

treatment is almost identical to the one described above. However, here gj,t−1 represents the

sum of the guesses of the three group members. This makes it so that we estimate only one

parameter instead of separate parameters for each neighbor. We find this reasonable since,
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from the participant’s point of view, there is no distinction between her observable group

members. Table 7 reveals the estimated parameters λt̂ = {0.706, 0.575, 0.642, 0.612}.

Table 7: λt̃ Values: High Information Treatment

gi,t

t̃ = 5 t̃ = 13 t̃ = 21 t̃ = 29
gi,t−1 0.198 0.322∗∗ 0.118 -0.213

(0.156) (0.019) (0.552) (0.354)
gj,t−1 0.0511 0.0132 0.0693 0.145∗

(0.328) (0.744) (0.284) (0.055)
si 0.706∗∗∗ 0.575∗∗∗ 0.642∗∗∗ 0.612∗∗∗

(0.000) (0.000) (0.000) (0.000)
sc -0.0614 0.0617 0.0315 0.162∗

(0.714) (0.134) (0.628) (0.061)
N 108 108 108 108

p-values in parentheses

Individual-level clustering
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

While Table 8 reveal the estimated parameters mi,i = 0.568, mi,j = 0.128 from the first

column; mi,i = 0.312, mi,j = 0.0658 and mi,j = 0.497 from the second column; δi = 0.0675

and δc = 0.0201 from the third column.

Table 8: Parameter Values: High Information Treatment

gi,t
gi,t−1 0.568∗∗∗ 0.547∗∗∗

(0.000) (0.000)
gj,t−1 0.128∗∗∗ 0.122∗∗∗

(0.000) (0.000)
g
i,t−1

0.312∗∗∗

(0.000)
g
j,t−1

0.0658∗∗∗

(0.002)
gj,t−1 0.497∗∗∗

(0.000)
si 0.0281∗∗∗ 0.0358∗∗∗ 0.0675∗∗∗

(0.000) (0.000) (0.000)
sc 0.0197∗∗∗ 0.0234 0.0201∗∗∗

(0.001) (0.142) (0.004)
N 13824 1296 9936

p-values in parentheses

Individual-level clustering
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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2.8 Best Response to Data

The main estimation utilizes games in which information is released sequentially, allowing for

the separate estimation of the parameters of interest. Having estimated the parameters of

the model, it is then of interest to ask what would be the best response to the observed data.

If a Bayesian agent were to participate in this experiment, knowing that this is exactly the

pool of players they would face, what would be their best response? The values of the best

response parameters are reported in Table 9. A quick glance reveals that the best response to

the data differs from the estimated parameters. These optimal weights are calculated for the

high information treatment, similar weights are obtained for the low information treatment.

Table 9: Best Response to the Data

Weight on Private Signal
λ5 λ13 λ21 λ29

Value 1/2 1/3 1/4 1/5

Weight on own Previous Guesses Anchoring Parameters
mi,i mi,j mi,i mi,j δc δs

Value 1 0 0.50 0.50 0 0

As can be seen, even when faced with agents who are not Bayesians, there is no reason

to deviate from the Bayesian optimal weights on the private signal. Furthermore, there is

no reason to anchor on the common or the private signal, thus δc = δs = 0. On the other

hand, since there is no more immediate convergence in rounds with no new information, the

Bayesian player would no longer be indifferent on which past guesses to follow. It would be

optimal to place weight one on one’s own guess and zero on all other participants’ guesses.

Finally, one round after a participant has received information, it is no longer optimal to

place full weight on that participant; rather, it is now optimal on average to place weight

0.50 on them. This comes as a result of participants’ over-reacting to their own signals. In

fact, the optimal weight to place on the guess of a participant who just received a signal is

time-dependent, in particular, m6
i,j = 0.71, m14

i,j = 0.59, m22
i,j = 0.39, and m30

i,j = 0.30. As

was seen in the data, participants roughly place weight between 0.57 and 0.70 on their own

signal, when they should, in fact, place a decreasing weight the later they receive the signal.

To correct this, best responding requires placing a lower weight on the recently informed

participant. This weight further decreases for participants who receive their signals in later

rounds.
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3 Further Data Analysis

3.1 Guess Changes

Let gi,r,k represent the guess of participant i in round r of game k. We calculate the absolute

value of the round-to-round difference between the guesses, that is △gi,r,k = |gi,r,k − gi,r−1,k|,
and plot the histogram of these differences in Figure 6 . As can be seen, most of the round-to-

round guess changes are relatively small. Some changes in the participants’ guesses, however,

are more sizable.

Figure 6: Histogram of Absolute Guess Change
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To better understand when these changes take place, we calculate the mean of these

differences across individuals and games, △gr =
1
IK

∑I
i=1

∑K
k=1 △gi,r,k. We do this separately

for games in which information arrives sequentially in rounds 5, 13, 21, and 29, as well as

games in which all signals arrive simultaneously in round 5. Figure 7 plots these changes. As

can be seen, when information is released sequentially, these average differences are higher

in the information rounds, whereas when information is released simultaneously, the sizable

difference occurs exactly in round 5, when all participants receive their signals.
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Figure 7: Average Absolute Guess Change
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We further break down these average changes based on when the participant received

the signal; these changes are shown in Figure 8. On average, the biggest difference from the

previous guess occurs on the round in which the participant receives their private signal.

Figure 8: Average Absolute Guess Change by Signal Arrival
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3.2 Convergence

We now seek to see whether the guesses of participants within a group converge in time. Let

z(i, k) represent the set of the members of the group to which participant i belongs in game

k. We calculate the following 2:

di,r,k =
1

I

I∑
i=1

∣∣∣gi,r,k − 1

4

4∑
j∈z(i,k)

gj,r,k

∣∣∣
Figure 9 plots these values for all 40 rounds, separately when information arrives sequentially

and simultaneously. As can be seen, for the sequential arrival games, this difference is

increased in information arrival rounds and falls between such rounds. For games in which

all signals arrive simultaneously, there is a large jump in round 5, when all participants

receive their signals. This difference tends to fall for the next few rounds and stabilizes. As

can be seen, the guesses of the participants are closer under the complete network.

Figure 9: Average Difference from Group Average Guess
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3.3 Gravitation Towards the Signal

We next turn to analyze to what extent participants adjust their guesses toward the latest

signal received by a member of the group. Let r̂i,k ∈ {5, 13, 21, 20} represent the round in

which signal si,k arrives for participant i in game k. For each group member, we calculate

the difference between their guess and participant i’s signal, one round before the signal

arrival all the way to 7 rounds after. We average this difference out across participants and

normalize it by the average initial difference one round before the signal arrival. Hence, we

2Note that this is just a monotonic transformation of the standard deviation measure.
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calculate:

dzi,r,k = 1−
1
I

∑
i (gi−z,r,k − si,k)

1
I

∑
i

(
gi−z,r̂i,k−1,k − si,k

) r ∈ {r̂i,k − 1, . . . , r̂i,k + 7} z ∈ {0, 1, 2, 3}

From the values of d0i,r,k, we see how the participant was influenced by her own signal.

Whereas d1i,r,k informs us how the participant’s neighbor, who gets to see her guess with

one round delay, is influenced by her signal; All the way to d4i,r,k, which informs us how the

participant who is least likely to be influenced by participant i’s signal, shifts her guesses.

For all values of z, this measure is mechanically equal to 0 one round before the signal arrival.

It would remain unmoved from 0 if, on average, participants’ guesses did not shift toward the

signal at all. If, however, the participants’ guesses fully shifted towards the signal, this value

would be equal to 1. Values in between inform us about the magnitude to which participants’

guesses moved toward the signal. In Figure 10, we see these measures for games in which all

signals arrive simultaneously in round 5.

Figure 10: Gravitation Towards the Signal: Simultaneous Signal Arrival
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As can be seen, in the ring network, the participant that was most influenced by par-

ticipant i’s signal is participant i herself. With d0i,r̂i,k,k having a value of about 0.58 in the

round when the signal is received, which is round 5 for these games. This indicates that,

on average, when mixing between their last guess and their newly received signal, partici-

pants place weight of about 0.58 on their signal. The value of d0i,r,k slowly goes down as the

participant is influenced by others’ guesses and is drawn towards them. From the graph,

we can also see that under the ring network, the second most influenced group member is

the first neighbor of participant i, who gets to see her guess with one round delay. As ex-

pected, for any round, we see a clear ranking of influences from d1i,r̂i,k,k to d3i,r̂i,k,k, where the

further they are from directly seeing the guess of participant i, the less they are influenced.
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On the complete network, however, all neighbors are roughly equally influenced, as they all

have equal to each other’s past guesses. What may seem surprising is that in the round

where participant i receives a signal, the values of dzi,r̂i,k,k for her neighbors are not close to

0. This might seem a surprise at first, as these members could not have been influenced by

a signal that only participant i saw that round; however, the explanation for this is rather

mechanical. In rounds in which all signals arrive simultaneously, all signals are either above

or below the common signal. This correlation makes these values above zero even in the

first round. Figure 11, on the other hand, plots these values for games in which information

arrives sequentially.

Figure 11: Gravitation Towards the Signal: Sequential Signal Arrival
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What becomes clear from the graph above is that, once more, the most influenced agent

is the agent who receives the private signal. In the complete network, all other agents are

approximately equally affected, as they all have equal access to the changed guesses of the

agent who received information. In the ring network, however, the second most influenced

participant is the first neighbor of the participant who received the private signal, followed

by that neighbor’s neighbor. In comparison, the least affected participant is the neighbor’s

neighbor’s neighbor. Thus, in the ring network, as information disseminates in the network,

its impact slowly declines.
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