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Abstract

In this Online Appendix, we describe the details of the experimental interface and display

sample instructions. In addition, we offer several extensions to the underlying theoretical model

and our data analysis. In particular, we illustrate the inconclusive effects of risk aversion and

show that our risk and altruism elicitations have little explanatory power in our data. We

inspect session effects and demonstrate that they are unlikely to generate our results. We also

consider various levels of clustering in our analyses and offer supplementary analyses to those

discussed in the text.
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1 Lab Implementation

In what follows, we first describe several of our design choices and the workings of the experimental

interface. We then offer sample instructions for our majority treatment.

1.1 Conveying Information

Given the information that unfolds (the evolution of the Brownian motion), we compute at every

point in time the probability that choice A or choice B is correct and show this computation directly

to participants. In doing so, we ensure that probabilities are adequately updated, and thus, none of

our findings emerges as a direct consequence of participants’ failure to compute Bayesian posteriors.

Figure 1: Information Bar

Figure 1 depicts the information bar through which participants are informed about the proba-

bility of choice A or choice B being correct. At the top, we depict the probability of choice A being

correct, whereas, at the bottom, we depict 100− P (A), or the probability that choice B is correct.

At the beginning of each game, the blue dot (which in the figure is at 27% for A, or equivalently

at 73% for B) is positioned exactly in the middle, indicating that initially the two choices are

equally likely to be correct. As the Brownian motion evolves (which represents the log-likelihood of

each state being correct), we transform it into a probability of choice A or choice B being correct.

Namely we compute P (A is correct) = eXt

1+eXt
and accordingly position the blue dot.

1.2 Experimental Interface

The interface seen by participants in our majority treatment is shown in Figure 2.
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Figure 2: Majority Treatment Interface

• On the top left corner of the interface there is a round counter. This ranges from Round 1

all the way to Round 30.

• Below the round counter, throughout the experiment, participants are reminded of their

waiting costs—their information acquisition costs. These costs are the same for all treatments,

namely 40 tokens per minute.

• Below these reported costs, participants see the information bar described in Section 1.1.

• To the right of the information bar, participants have access to a panel that informs them

of the decisions of other group members. Participants always see their own position as the

green circle, and the choices of other group members as the orange square and triangle. As

can be seen in Figure 2, both the participant as well as another group member have voted for

A. An analogous panel appears for treatments involving groups using unanimity; it is absent

in our individual treatments.

• Beneath the information bar, participants see an A (vote for A), W(wait), and B (vote for

B) buttons. By clicking on these buttons, participants can submit/change their votes. Each
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round starts with the W button as the default choice. The current choice is highlighted using

a gray frame around the corresponding button. In Figure 2, the participant has clicked on A.

• Beneath the voting buttons, participants are once more reminded of the voting rule.

• Beneath the voting rule reminder, a new line appears after the pivotal vote is cast, informing

the participants of the realized outcome, as well as their payoff. In the round depicted in

Figure 2, the majority of participants chose option A, which matched the realized state, and

their payoff was 200 − t · 40 = 164.40, where t represents the time group members took to

arrive at the decision. Analogous reports occur for treatments in which groups use unanimity,

or when individuals have full discretion.

• Whenever participants are ready, they can indicate their desire to start the new round by

clicking the “Next” button. Once all participants within the session are ready, new random

groups are formed and the new round begins.

1.3 Sample Instructions

1.3.1 Initial Instructions

The initial instructions are identical for all treatments. Each treatment started with the instructions

being read aloud, as well as two practice round for the participants to get used to the interface.

WELCOME TO PEXL

Princeton Experimental Laboratory
for the Social Sciences

WELCOME

Welcome to PExL and thank you for participating in 
today’s experiment. 

 Please place all of your personal belongings away so 
that we can have your complete attention.

 Please use the laptops as instructed. In particular, please
do not attempt to browse the web or use programs 
unrelated to the experiment.

GUIDELINES

 You will be paid in private and in cash at the end of the experiment.

 The amount that you ultimately earn in the experiment depends on 
your decisions, the decisions of others, and random chance. You have 
each earned a $10 payment for showing up on time.

 You will be using laptops for the entire experiment, and all 
interactions between yourself and others will take place via the 
laptop’s terminal. 

 Please DO NOT socialize or talk during the experiment.

TODAY’S EXPERIMENT IS ABOUT GROUP 
DECISIONS
 You will be making decisions in groups containing two 
other individuals.

 You will receive information over time that can help you 
make a profitable decision.

 However, waiting for this information is costly.

TWO OPTIONS

 At the outset, one of two jars is selected at random, with equal probability: A (for 
Amaranth) or B (for Blue).

A B

TWO OPTIONS

We will not tell you which jar had been selected:

?
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TWO OPTIONS

 (Jars) A and B are equally likely.

 You will not know which one had been selected.

 Your goal is to guess the jar that had been selected: A or B.

 You and all members of your group will receive 200 tokens for a correct 
guess, 0 for an incorrect guess.

INFORMATION

 You will be able to acquire information about the state or jar that had been 
selected prior to making your guess.

 This information will come at a cost (details soon).

INFORMATION

 Information arrives over time

 A consequence of noise added to a simple process

We will start with the simple process

INFORMATION – SIMPLE PROCESS

 Suppose that when A is selected, at any time t, you observe the signal 0.84*t
After 0.5 minutes, observe 0.84*0.5 = 0.42
After 1 minute, observe 0.84*1 = 0.84

 Suppose that when B is selected, at any time t, you observe the signal -0.84*t
After 0.5 minutes, observe -0.84*0.5 = -0.42
After 1 minute, observe -0.84*1 = -0.84

 You can tell whether A or B were selected by the sign of the signal

INFORMATION – SIMPLE PROCESS

Amaranth

Blue

Time

signal

signal

INFORMATION – SIMPLE PROCESS

 This is not an interesting way to provide you information: you can immediately tell 
whether A or B had been selected by the sign of the signal

 Now suppose we add some noise at any point in time

NOISE: FIRST STEP

 Think of an individual standing on the straight line, at point 0

 At each period, the individual determines where he walks according to a coin toss: 
right if heads, left if tails

0 1 2-1-2

NOISE: FIRST STEP

 So, if we look at the individual’s location on the line over time, it will go back and 
forth. For example:

time

location

NOISE: SPEEDING UP

 Suppose now we speed the process

 The individual will move right or left at greater frequencies, but will consequently 
move a shorter distance

 Let’s assume the individual tosses a coin and moves left or right every t seconds, but 
moves only a distance of 𝒕𝒕

 Now, movements are small and rapid!

EVERY 0.1 SECOND
location

Time (seconds)

EVERY 0.05 SECOND
location

Time (seconds)

EVERY 0.03 SECOND
location

Time (seconds)

EVERY 0.01 SECOND
location

Time (seconds)

EVERY 0.002 SECOND
location

Time (seconds)

EVERY 0.001 SECOND
location

Time (seconds)

BACK TO INFORMATION YOU’LL SEE

 Recall the simple process we 
described: a signal that increases 
0.84 every minute if Jar A 
(Amaranth) was chosen and 
decreases 0.84 every minute if 
Jar B (Blue) was chosen 

 We will now add the noise with 
vanishing time intervals to these 
curves 

time

signal

A

B

EXAMPLE Signal + 
noise

Amaranth

Blue

Time (seconds)

INFORMATION: CONCLUSION

 Adding noise still allows you to learn over time: the higher the signal + noise, the 
more likely it is that A had been selected

 In fact, for every value of the signal + noise, a sophisticated statistician can translate 
what she sees into a probability that A had been selected

 Ultimately, that is what we will show you: the probability of A and B over time 

1.3.2 Sample Instructions: Majority Treatment

The examples of the process evolving were animated.
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EXAMPLES INFORMATION COSTS

 If your group correctly guesses the selected jar, you will receive 200 tokens.

 However, with each passing minute you will lose 40 tokens (information costs).

EXAMPLES 1

 Suppose your group guesses immediately that the jar is A.

 Your guess will be correct with 50% probability.

 You will not pay any costs.

 Your overall expected payoff is: 0.5 x 200 – 0 = 100

EXAMPLES 2

 Suppose your group guesses after 30 seconds, when the probability of Jar A 
selected is 70% .

 Your guess will be correct with 70% probability.

 You will pay 40 x ½ = 20 tokens for information.

 Your overall expected payoff is: 0.7 x 200 – 20 = 120

EXAMPLES 3

 Suppose your group guesses after one minute, when the probability of Jar A 
selected is 80% .

 Your guess will be correct with 80% probability.

 You will pay 40 x 1 = 40 tokens for information.

 Your overall expected payoff is: 0.8 x 200 – 40 = 120

GROUP DECISION

 At the beginning of each round, you will be randomly grouped with two other 
individuals. 

 The software will select the jar randomly, A and B equally likely.

 Your group members change at random from round to round, as does the state.

GROUP DECISION WITHIN A ROUND
 As long as a decision has not been made, you and your group members will see the same 
information.

 The costs of information will be 40 tokens per minute for each of you.

 At any point in time, you can choose whether you would like to 
 Stop and guess A;
 Stop and guess B;
 Wait—choose W—and collect more information at a cost of 40 tokens per minute.

 You can change your mind as long as a decision has not been made.

 You will be able to see what your group members are choosing throughout.

INTERFACE GROUP DECISION

 Once a majority in your group chooses either A or B, information collection will stop 
and that will be the group’s decision:

If 2 or 3 members in your group choose A, your group’s guess is A

If 2 or 3 members in your group choose B, your group’s guess is B

 You will be paid the sum of your payoffs across 20 randomly 
selected rounds (excluding the practice round).

 You will also be asked to complete several simple tasks at the end.  
You can earn additional money based on your decisions in these tasks.

Post-Experiment
Your total earnings in the experiment are the sum of the 
following amounts:

• $10 show-up payment

• payoff from 20 out of 30 randomly selected real rounds: 

100 tokens = 1 dollar

• payoff from the simple tasks:

100 tokens = 1 dollar

You need not tell any other participant how much you earned.

Your Earnings
Let the Experiment Begin!

If there are no questions, we will now begin the 
actual experiment.

Princeton Experimental Laboratory
for the Social Sciences

2 Theoretical Predictions

We now outline the theoretical predictions for our various treatments. For details, see Dvoretzky

et al. (1953) or Chan et al. (2018).

We consider the setting described in our experimental design. An agent assesses which one of

two ex-ante equally likely states, A or B, are realized. Information follows a Wiener process with a

variance of 1. When the state is A, the process has drift µ = 0.84; When the state is B, the process

has drift −µ = −0.84. Tracking this information comes at a flow cost of c. The agent guesses

the state that is more likely once information collection terminates. For ease of exposition, we

normalize the reward for an ultimately correct guess of the state to be 1. With this normalization,

the flow cost corresponding to that used in our experiments is c = 0.2.

It is convenient to define µ′ ≡ 2µ2. The agent’s posterior belief is then given by a Wiener
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process, with drift µ′ and instantaneous variance 2µ′ in state A, and drift −µ′ and instantaneous

variance 2µ′ in state B. For our parameters, µ′ = 1.4.

One of the main contributions of Wald (1945) and the continuous-time counterpart of Dvoretzky

et al. (1953) is to demonstrate that, in the sequential-sampling setting, an optimizing agent uses

a simple threshold policy. Namely, at any time t, the agent calculates the log-likelihood ratio

θt = log
(
Pr[A]
Pr[B]

)
. The optimal policy specifies a pair of cutoffs (g,G), with G ≥ g, such that the

agent stops information collection and guesses the state is A whenever θt ≥ G. Similarly, the agent

stops information collection and guesses the state is B whenever θt ≤ g.

For θ ∈ [g,G], let u(θ|g,G) represent the expected payoff from the deliberation process. A

similar derivation to that of Chan et al. (2018) yields1

u(θ|g,G) =
eG(eθ − eg) + (eG − eθ)

(1 + eθ)(eG − eg)

− c

µ′
(G− θ)(eG+θ + eg) + (θ − g)(eg+θ + eG)− (G− g)(eθ + eG+g)

(1 + eθ)(eG − eg)
.

The corresponding first-order condition with respect to the lower boundary is then2

∂u(θ|g,G)

∂g
=

−(eG − eθ)
(1 + eθ)(eG − eg)2

[
eg(eG − 1)− c

µ′
(
(G− g)eg(eG − 1) + (eG − eg)(1− eg)

)]
= 0.

This condition shows that the cutoffs satisfying the first-order condition do not depend on the

current log-likelihood ratio θ. Thus, solutions are stationary.

Because the problem is symmetric, the solution satisfies g = −G. The optimal value of G can

then be determined by the implicit function c
(
2eGG+ e2G − 1

)
− eGµ′ = 0. With µ′ = 1.4 and

c = 0.2, the numerical solution for the optimal boundary is G∗ = 1.46. Translated into probabilities,

this value becomes e1.46

1+e1.46
= 0.81. Thus, a risk-neutral agent should wait until the probability of

the most likely state is 81%. Once again, our parameter choices ensure that the optimal stopping

threshold is not overly extreme so that errors are unlikely to be one-sided.

Consider now a group of n > 1 homogeneous agents. At each point in time, each agent decides

whether she would like to stop and guess A, stop and guess B, or wait. The group continues

information collection until either a majority or a unanimity of agents in the group choose to guess

1Our formulation here differs from that of Chan et al. (2018) in that they consider exponentially discounted
utilities, whereas we consider flow costs of time spent on information collection. This modification simplifies the
experimental interface.

2The first-order approach is indeed valid, we omit details for the sake of brevity.
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the same state.

The utilitarian efficient equilibrium for the group, under both majority and unanimity, corre-

sponds to the optimal search policy described above, namely utilizing a threshold of 81%. In our

experiment, participants make group decisions with other individuals who do not choose the exact

81% threshold. However, it is easy to show that, as long as agents use symmetric cutoff policies,

the 81% threshold is still the best response for any agent. Therefore, there are no immediate

consequences for optimal choices because of potentially noisy behavior of other agents.

3 Additional Analysis

3.1 Pulling the Trigger: Majority and Unanimity

In the main text, we depict the evolution of posteriors and the corresponding choices in our in-

dividual treatments. Figure 3 and Figure 4 below provide analogous graphs for our majority and

unanimity treatments, which depict decision posteriors corresponding to pivotal votes.

The general patterns observed for our individual treatments remain. For example, later deci-

sions in our dynamic treatments often correspond to lower accuracies. However, there are some

differences. In particular, groups using majority pull the trigger far quicker than groups using

unanimity, in line with results described in the text.

Figure 3: Pulling the Trigger: Majority Treatment
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Figure 4: Pulling the Trigger: Unanimity Treatment
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3.2 Non-stationary Threshold Posteriors

In the text, we consider individuals’ voting probabilities in each of our treatments. We now take a

different approach, analyzing the realized decision posteriors when the pivotal vote is cast. Table 1

displays regression analysis pertaining to individual and group choices—the stopping posterior—in

our treatments. We use the shorthand of I, M , and U for the individual, majority, and unanimity

treatments, respectively. The variables dM and dU are dummy variables for the majority and

unanimity treatments. To allow for learning, we include dummy variables of the form Last 15

X, with X denoting the treatment; these indicate whether observations are taken from the last

15 rounds of our sessions. Last, we consider the impacts of time spent collecting information to

potentially account for non-stationary thresholds. We do so in two ways. First, we classify the

processes as “Slow” or “Quick”. For this classification, we calculate the time it takes to reach

the theoretically optimal threshold of 0.81 in each process. If a process takes more time than the

median process to pass the 0.81 threshold (i.e., 29.8 seconds) we label it “Slow”; otherwise, the

process is labeled “Quick”. The resulting variable Slow X is a dummy variable indicating whether a

process is slow in each treatment X. We also consider the time spent collecting information in each

treatment X, denoted by Time X. The last three specifications allow for fixed effects corresponding

to the individuals casting the pivotal votes. Errors are clustered at the individual level.

The first column of Table 1 echoes our observations in the text. We see significant differences

9



Table 1: Decreasing Thresholds

Posterior

Ordinary Regression Fixed Effects Regression

All Rounds Last 15 Rounds All Rounds Last 15 Rounds

Constant 0.755∗∗∗ 0.785∗∗∗ 0.806∗∗∗

(0.00846) (0.00738) (0.0109)
dM -0.0362∗∗∗ -0.0303∗∗∗ -0.0372∗∗∗

(0.0112) (0.0107) (0.0128)
dU 0.0444∗∗∗ 0.0347∗∗∗ 0.0431∗∗∗

(0.0103) (0.00885) (0.0124)
Last 15 I 0.0247∗∗∗ 0.0247∗∗∗ 0.0299∗∗∗

(0.00647) (0.00647) (0.00790)
Last 15 M 0.0162∗∗∗ 0.0162∗∗∗ 0.0224∗∗∗

(0.00613) (0.00611) (0.00653)
Last 15 U 0.0376∗∗∗ 0.0376∗∗∗ 0.0430∗∗∗

(0.00717) (0.00688) (0.00726)
Slow I -0.0648∗∗∗ -0.0576∗∗∗

(0.00557) (0.00625)
Slow M -0.0774∗∗∗ -0.0736∗∗∗

(0.00717) (0.0101)
Slow U -0.0440∗∗∗ -0.0271∗∗∗

(0.00652) (0.00989)
Time I -0.000651∗∗∗ -0.00110∗∗∗

(0.000209) (0.000238)
Time M -0.00130∗∗∗ -0.00165∗∗∗

(0.000340) (0.000523)
Time U -0.000524∗∗∗ -0.000723∗∗∗

(0.000132) (0.000218)

N 1980 1980 990 1980 990

Standard errors in parentheses

Individual-level clustering
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

between treatments, with less precise, or hasty, majority decisions and more precise, or slower,

unanimous decisions. Compared to the individual treatment, the mean posterior with which the

pivotal majority vote is cast is about 4 percentage points lower, whereas the mean posterior with

which the pivotal vote is cast is about 4 percentage points higher.

Throughout, we see a significant effect of learning over the first 15 rounds, with participants

becoming more patient, casting their vote with a significantly higher decision posterior. Because

both the individual and majority treatments yield, on average, posteriors well below the theoret-

ically optimal, the increase in decision posteriors in later rounds is a move towards the optimal

choice. In the unanimity treatment, however, learning leads to overshooting, with an average deci-

sion posterior of 0.84 in the last 15 rounds. As mentioned at the outset, and elaborated on below,

we do not see evidence of substantial learning beyond the first 15 rounds.

The second and third columns consider the impacts of the underlying process, i.e., whether it

is slow or quick. Slow processes are associated with significantly lower decision posteriors across all

our dynamic treatments. This association is present and similar in both magnitude and significance,
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even when restricting attention only to the last 15 rounds of each session. It is most pronounced

for groups deciding through majority rule and least pronounced in groups using unanimity. Lower

decision posteriors in slow processes indicate a non-stationary threshold for halting information

collection. The last two columns of Table 1 illustrate a declining-threshold pattern more directly,

and echo the results presented in the text. Namely, we introduce an explicit dependence on the

time at which a pivotal vote is cast.3 The estimated coefficients corresponding to decision times are

negative and statistically significant: the longer it takes for the pivotal vote to be cast, the lower is

the threshold posterior. As before, the least affected treatment is unanimity and the most affected

treatment is majority. In particular, in the majority treatment, in the last 15 rounds, for each 5

seconds that the group decision is delayed, the average threshold posterior decreases by almost one

percentage point.

3.3 Learning within Sessions

In order to assess learning in our dynamic treatments, we examine whether there is a trend in

participants’ stopping posteriors over the course of our sessions. In Table 2 we regress participants’

stopping posteriors on Round, which stands for the session round; Slow, which identifies the process

occurring during the round as a slow or a quick process (see Section 3.2 above); and an interaction

between Round and Slow, allowing for a different learning trend depending on the process.4 We run

an individual-level fixed-effects regression, allowing for a different intercept for each participant.

By running the regression separately for each dynamic treatment, we allow for learning to affect

these treatments differently. To see whether there were enough rounds for learning to converge, we

run additional regressions separately for the first and the last 15 rounds. In addition, we control

for Correctt−1 that equals 1 if the previous period’s individual decision, or group decision in the

majority and unanimity treatment, was correct, and equals 0 if the previous period’s decision was

incorrect. Finally, we control for Differencet−1, which equals the difference between participants’

last-period choice from the mean stopping posterior of other members of their group in the last

3The fixed-effects specification is appropriate since, without it, we could in principle identify a misleading positive
association between decision times and decision posteriors. Indeed, mechanically, since we consider a diffusion with
drift, posteriors exhibit an increasing trend. Group fixed effects cannot be used due to the random matching protocol
we utilize. We therefore use pivotal-voter fixed effects to adequately capture the response to time passed.

4We showed that participants tend to vote with a lower posterior when faced with a slow process, which is why we
allow for different slopes and intercepts depending on the features of the process. Otherwise, if earlier rounds entail
quicker processes, for example, we could erroneously infer a declining stopping posterior.
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Table 2: Learning throughout Sessions

Posterior

Individual Treatment Majority Treatment Unanimity Treatment

All Rounds First 15 Last 15 All Rounds First 15 Last 15 All Rounds First 15 Last 15

Round 0.00154∗∗∗ 0.00511∗∗∗ -0.000277 0.00150∗∗∗ 0.00177 0.00271∗∗∗ 0.00192∗∗∗ 0.00267∗∗∗ 0.00360∗∗∗

(0.000555) (0.00114) (0.00118) (0.000420) (0.00150) (0.000742) (0.000276) (0.000788) (0.000764)
Round× Slow 0.000619 0.00223 0.00190 -0.000186 0.0110∗∗∗ 0.00184 0.000912∗ 0.00904∗∗∗ -0.00246∗

(0.000445) (0.00249) (0.00163) (0.000701) (0.00253) (0.00175) (0.000515) (0.00182) (0.00134)
Slow -0.0705∗∗∗ -0.0860∗∗∗ -0.101∗∗ -0.0712∗∗∗ -0.168∗∗∗ -0.119∗∗∗ -0.0782∗∗∗ -0.147∗∗∗ -0.000178

(0.00882) (0.0220) (0.0372) (0.0133) (0.0251) (0.0405) (0.00966) (0.0169) (0.0296)
Correctt−1 -0.0218∗∗∗ -0.0402∗∗∗ -0.00913 -0.0256∗∗∗ -0.0333∗∗∗ -0.0183∗ -0.0287∗∗∗ -0.0247∗∗∗ -0.0364∗∗∗

(0.00655) (0.00910) (0.00997) (0.00687) (0.00912) (0.00969) (0.00588) (0.00643) (0.00968)
Differencet−1 0.0367 0.0290 -0.0172 0.0417 0.0319 -0.0348

(0.0371) (0.0610) (0.0427) (0.0282) (0.0338) (0.0387)
Individual Level FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

N 986 476 510 728 339 389 1392 672 720

Standard errors in parentheses

Individual-level clustering
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

period (for our majority and unanimity treatments only).

From the estimated coefficients of Correctt−1, we see that, on average, participants cast their

individual votes with a lower posterior in round t if their or their group’s guess in round t− 1 was

correct. In contrast, the coefficients of Differencet−1 is never statistically significant, implying

that group effects operate more forcefully through the outcomes they generate.

Importantly, when it comes to learning, the regressions in the second and third columns reveal

that both the magnitude and statistical significance of Round and Round×Slow drop in the last 15

rounds in the individual treatment. A similar decrease is observed for our majority and unanimity

treatments. Even in cases where statistical significance persists, the magnitude is much lower in

the last 15 round. The finding that the magnitude of learning is substantially lower in the last 15

rounds compared to the first 15 rounds, as well as the decrease in statistical significance, leads us

to believe that 30 rounds afforded sufficient learning opportunities.

3.4 Individual-Level Choice Heterogeneity

Figure 5 depicts the distributions of the mean posteriors at the time of voting in our treatments,

where mean posteriors are calculated for each participant separately. In line with our discussion

in the text, in the individual and unanimity treatments, a substantial fraction of individuals con-

sistently vote at a posterior close to the optimal threshold. Under majority, we see more variation

across individuals.
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Figure 5: Dynamic Treatments Individual Heterogeneity
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3.5 Statistical Assessment of the Aggregation Effect

In addition to the cumulative distribution plots and the Kolmogorov-Smirnov tests appearing in the

main text, below we present regressions in which we estimate the mean posterior of the observed

and simulated group treatments. Concretely, in Table 3, dSim is a dummy variable equal to 0 for

observed data points, and 1 for simulated data points. The constant captures the mean posterior

in the observed data, whereas the coefficient of dSim captures the difference in mean posteriors

between the observed and simulated data. We cluster errors at the individual level.

Table 3: Aggregation Effects in Groups

Posterior

Majority Unanimity

dSim 0.0477∗∗∗ 0.000878
(0.00847) (0.00756)

Constant 0.727∗∗∗ 0.818∗∗∗

(0.00678) (0.00454)

N 330480 330480

Standard errors in parentheses

Individual-level clustering
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

In line with the conclusions drawn in the main text, decision posteriors in the majority treatment

are significantly lower than those derived from simulated groups of individuals using majority rule.

In contrast, decision posteriors in the unanimity treatment are not significantly different than those

derived from simulated groups of individuals using unanimity.
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3.6 Voting Probabilities in the Last 15 Rounds

Table 4 replicates the analysis of individual voting probabilities reported in the text, restricting

attention to the last 15 rounds of sessions. The results are qualitatively similar to those pertaining

to data from all rounds, albeit less significant due to the reduction in power.

Table 4: Probit Regression: Last 15 Rounds

P (V ote)

Individual Majority Unanimity Individual Majority Unanimity

Posterior 5.421∗∗∗ 5.057∗∗∗ 5.779∗∗∗ 5.541∗∗∗ 3.826∗∗∗ 5.793∗∗∗

(0.524) (0.495) (0.520) (0.601) (0.605) (0.557)
Time 0.218∗ 0.711∗∗∗ 0.396∗∗∗ 0.330∗∗∗ 0.611∗∗∗ 0.410∗∗∗

(0.128) (0.179) (0.121) (0.122) (0.191) (0.118)
Slope 0.123∗∗ 0.107∗∗ 0.0223

(0.0541) (0.0463) (0.0373)
StandardDev -0.265 0.989∗∗∗ -0.122

(0.437) (0.379) (0.345)
Constant -5.138∗∗∗ -4.604∗∗∗ -5.507∗∗∗ -5.361∗∗∗ -4.007∗∗∗ -5.521∗∗∗

(0.464) (0.342) (0.424) (0.531) (0.451) (0.466)

N 4335 3553 6201 3810 2822 5474

Standard errors in parentheses

Individual-level clustering
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

3.7 Risk Aversion, Altruism, and Alternative Clustering

In this section, we analyze alternative specifications for the analysis presented in the main text.

The first column in Table 5 reports results from regressions focused on our main treatment effects

in which standard errors are clustered at the individual level. The regressions include controls

for risk attitudes and altruism, through two new explanatory variables: Tokens Sent and Tokens

Not Invested. As mentioned in our description of the experimental design, at the end of each

session, participants completed two risk-elicitation tasks as in Gneezy and Potters (1997). Namely,

participants had 200 tokens to invest in a safe or risky asset. Tokens that were not invested were

kept in the safe asset. The variable Tokens Not Invested, which can take values between 0 and 200,

represents the amount participants decided to keep in the safe asset (and not invest in the risky

asset).5 Roughly speaking, the higher this value, the more risk averse participants are. At the

end of each session, participants also played a dictator game, in which they were given 200 tokens

and decided how much to keep for themselves, and how much to give to another, randomly-paired

participant. The variable Tokens Sent represents the amount of tokens participants gave.6 Since we

5In the majority and unanimity treatments, this variable represents the group average tokens not invested.
6In the majority and unanimity treatments, this variable represents the group average tokens sent.
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elicit each measure twice, we can run an instrumental-variable regression, using the first elicitation

as an instrument for the second. Doing so accounts for the fact that these are noisy elicitations,

see Gillen et al. (2019).

Table 5: Alternative Specifications

Posterior

Individual Level Clustering No Clustering Process Level Level Clustering

All Rounds All Rounds Last 15 Rounds All Rounds Last 15 Rounds

Constant 0.744∗∗∗ 0.767∗∗∗ 0.755∗∗∗ 0.744∗∗∗ 0.767∗∗∗ 0.755∗∗∗ 0.744∗∗∗

(0.0371) (0.00293) (0.00411) (0.00993) (0.0119) (0.0135) (0.0123)
dM -0.0329∗∗ -0.0404∗∗∗ -0.0362∗∗∗ -0.0329∗∗∗ -0.0404∗∗∗ -0.0362∗∗∗ -0.0329∗∗∗

(0.0134) (0.00519) (0.00727) (0.00738) (0.00539) (0.00688) (0.00640)
dU 0.0453∗∗∗ 0.0508∗∗∗ 0.0444∗∗∗ 0.0453∗∗∗ 0.0508∗∗∗ 0.0444∗∗∗ 0.0453∗∗∗

(0.0141) (0.00519) (0.00727) (0.00750) (0.00469) (0.00468) (0.00432)
Last 15 I 0.0247∗∗∗ 0.0247∗∗∗ 0.0247∗∗∗ 0.0247∗∗∗ 0.0247∗∗∗

(0.00643) (0.00581) (0.00582) (0.00768) (0.00741)
Last 15 M 0.0162∗∗∗ 0.0162∗ 0.0162∗ 0.0162∗∗∗ 0.0162∗∗∗

(0.00614) (0.00847) (0.00849) (0.00467) (0.00450)
Last 15 U 0.0376∗∗∗ 0.0376∗∗∗ 0.0376∗∗∗ 0.0376∗∗∗ 0.0376∗∗∗

(0.00665) (0.00847) (0.00849) (0.00958) (0.00924)
Tokens Sent 0.000252 0.000252∗∗ 0.000252∗∗∗

(0.000212) (0.000106) (0.0000656)
Tokens Not Invested 0.0000434 0.0000434 0.0000434

(0.000307) (0.0000904) (0.0000463)

N 1980 1980 1980 1980 1980 1980 1980

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The coefficients of neither Tokens Sent, nor Tokens Not Invested, appear statistically significant.

The sign and magnitude of all other estimated parameters remains roughly unchanged.

The following three columns in Table 5 report results from analogous regressions with and

without Tokens Sent and Tokens Not Invested. In these regressions, standard errors are not clus-

tered. The last three columns in Table 5 report results from the same analysis with standard errors

clustered at the process level. Recall that our experimental design entails a draw of 15 Wiener

processes, each utilized twice.7 It is at this process level that we cluster in the last three columns.

Results are similar across all these specifications. One exception is the coefficient on our altruism

proxy, Tokens Sent, which appears statistically significant, if very small, when we do not cluster

standard errors or cluster at the process level. Nonetheless, about 60% of participants give 0 tokens,

and more than 80% give less than 50 tokens. Given the estimated parameter value, this variable

has limited ability to explain the variations in stopping posteriors we observe.

7In each session, the last 15 processes corresponded to a reflection of the first 15. Therefore, we effectively have
two observations for each process in each of our treatments.
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3.8 Session Interactions

Since our group treatments entail a limited number of sessions, one may worry that interactions

within sessions are driving our results. We now illustrate various ways by which our results appear

robust to the session-partitioning in our data.

3.8.1 Probit with Session-Level Clustering

Our results remain statistically significant even when clustering standard errors at the session level,

as shown in Table 6 here. The table presents estimates from analysis analogous to that presented

in the main text. As can be seen, results are virtually identical.

Table 6: Probit Regression (Session-level Clustering)
P (V ote)

Individual Majority Unanimity Individual Majority Unanimity

Posterior 5.357∗∗∗ 5.149∗∗∗ 5.690∗∗∗ 5.071∗∗∗ 3.787∗∗∗ 5.463∗∗∗

(0.375) (0.813) (0.0938) (0.178) (0.605) (0.0388)
Time 0.242∗∗∗ 0.798∗∗∗ 0.333∗∗∗ 0.313∗∗∗ 0.673∗∗ 0.328∗∗∗

(0.0840) (0.134) (0.111) (0.0666) (0.279) (0.125)
Slope 0.137∗∗∗ 0.132∗∗∗ 0.0475∗∗∗

(0.0179) (0.0223) (0.00877)
StandardDev -0.142 0.626∗∗∗ 0.350∗∗∗

(0.317) (0.173) (0.0592)
Constant -4.980∗∗∗ -4.626∗∗∗ -5.263∗∗∗ -4.891∗∗∗ -3.880∗∗∗ -5.192∗∗∗

(0.251) (0.394) (0.0460) (0.112) (0.316) (0.0862)

N 7865 6772 11113 6824 5301 9660

Standard errors in parentheses

Session-level clustering
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

We next show that there is a statistically significant difference between the estimated parameters

across treatments. Table 7 reports regression results that speak explicitly to the difference between

the estimated parameters for the majority and unanimity treatments, clustering at the session level.

Instead of running the regressions separately, we define DM as a dummy variable that equals 1 for

observations from the majority treatment and 0 otherwise. We interact this dummy variable with

all parameters of interest. Thus, for all intents and purposes, the regressions whose results are

reported in Table 7 are nearly identical to those underlying Table 6 here. However, Table 7 allows

direct conclusions on the statistical significance of differences between the treatments.
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Table 7: Unanimity Compared to Majority (Session-level Clustering)

P (V ote)

Posterior 5.690∗∗∗ 5.463∗∗∗

(0.0861) (0.0357)
Time 0.333∗∗∗ 0.328∗∗∗

(0.102) (0.115)
Slope 0.0475∗∗∗

(0.00805)
StandardDev 0.350∗∗∗

(0.0543)
Constant -5.263∗∗∗ -5.192∗∗∗

(0.0422) (0.0792)

Posterior ×DM -0.540 -1.677∗∗∗

(0.776) (0.575)
Time×DM 0.465∗∗∗ 0.345

(0.163) (0.289)
Slope×DM 0.0842∗∗∗

(0.0227)
StandardDev ×DM 0.276

(0.173)
D2 0.638∗ 1.313∗∗∗

(0.376) (0.310)

N 17885 14961

Standard errors in parentheses

Session-level clustering
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

As can be seen, when regressing P (V ote) on posteriors and time, the majority treatment exhibits

significantly more pronounced reactions to time than the unanimity treatment. When regressing

P (V ote) on the posterior, time, slope, and standard deviation of the process, we see that results

from the majority treatment significantly differ from those under the unanimity treatment in the

initial intercept, the reaction to the posterior, as well as the reaction to the slope of the process. In

all cases, we have p-values lower than 0.01. Similar differences can be seen for the individual and

majority treatments.

3.8.2 Presence of Effects in Initial Rounds

The effects we capture are present from the very start of our sessions, before individuals have had

a chance to interact extensively with others in the session, as shown in Figure 6. The figure shows

that the comparisons across treatments is present in the first 5, first 10, first 15, as well as in all

30 rounds.
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Figure 6: Effect Present in Initial Rounds
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Across all our treatments, the distributions of pivotal choices similarly exhibit striking stability

over time.

Table 8 establishes statistical significance of the comparisons depicted for early rounds in Figure

6. We utilize data from the first one, two, three, four, or five rounds. In the regressions underlying

the table, DM represents a dummy variable as before: it equals 1 for observations from the majority

treatment. We report results for both individual-level and session-level clustering.

When clustering errors at the individual level, we reach a p < 0.01 significance level utilizing

only the first two rounds of data. When clustering errors at the session level, we reach a p < 0.05

significance level utilizing data from the first three rounds, while a p < 0.01 significance level is

reached by utilizing data from the first five rounds. Thus, the fundamental patterns in our data are

robustly present from the very start of our sessions, when interactions with others in the session

are severely limited.
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Table 8: Probit Regression (Session-level Clustering)

Posterior

Individual-level Clustering Session-level Clustering

Round: 1 Round: 1-2 Round: 1-3 Round: 1-4 Round: 1-5 Round: 1 Round: 1-2 Round: 1-3 Round: 1-4 Round: 1-5

DM 0.0319∗ 0.0377∗∗∗ 0.0440∗∗∗ 0.0330∗∗∗ 0.0440∗∗∗ 0.0319 0.0377∗ 0.0440∗∗ 0.0330∗∗ 0.0440∗∗∗

(0.0177) (0.0133) (0.0122) (0.00984) (0.00953) (0.0236) (0.0208) (0.0186) (0.0112) (0.0103)
Constant 0.627∗∗∗ 0.683∗∗∗ 0.696∗∗∗ 0.715∗∗∗ 0.700∗∗∗ 0.627∗∗∗ 0.683∗∗∗ 0.696∗∗∗ 0.715∗∗∗ 0.700∗∗∗

(0.0146) (0.0113) (0.0102) (0.00859) (0.00813) (0.0205) (0.0181) (0.0162) (0.00973) (0.00837)

N 115 229 344 458 573 115 229 344 458 573

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

3.8.3 Learning across Treatments

Next, we compare individual-level choices made in each dynamic treatment in the first and last 15

rounds. Recall that in the last 15 rounds, participants experienced the same sample paths (albeit

mirrored). Thus, we have a highly controlled environment to study learning. Figure 7 depicts how

choices evolve.

As can be seen, in terms of both the posteriors at which participants cast their votes, and the

time they took, there is a remarkable similarity between the individual and unanimity treatment.

Furthermore, the sample path itself heavily influences both the choice of posterior and time. For

example, in sample path 10, which is repeated 15 rounds later as sample path 25, we see that

participants in the individual and unanimity treatment spend a lot of time. Consequently, due to

the decreasing thresholds we identify, they submit their votes with lower posteriors.

3.8.4 Group Influence

Participants do not appear to be influenced by prior group members’ choices in our treatments, as

shown in Table 9. The table reports results from an individual-level fixed effects regression of the

posterior with which a participant cast a vote in round t, on the round number, Round, as well

as the difference between the posterior with which they cast a vote in round t− 1, from the mean

posterior with which other group members cast a vote in round t−1, denoted Differencet−1. The

Constant captures the average treatment fixed effect. Each column represents a separate fixed-

effects regression, for the different dynamic treatments, for either all 30 rounds, the first 15 rounds,

or the last 15 rounds (we use individual-level clustering, since the clustering level must match the

fixed effects level).

If participants are influenced by their group members, we expect the estimated coefficient on
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Figure 7: Learning across Treatments
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Table 9: Dynamic Group Effects

Individual Majority Unanimity

All First 15 Last 15 All First 15 Last 15 All First 15 Last 15

Round 0.00211∗∗∗ 0.00595∗∗∗ 0.00108 0.00136∗∗∗ 0.00240∗ 0.00414∗∗∗ 0.00201∗∗∗ 0.00380∗∗∗ 0.00364∗∗∗

(0.000461) (0.000951) (0.000956) (0.000404) (0.00132) (0.000711) (0.000301) (0.000708) (0.000776)
Differencet−1 0.0198 0.0170 -0.0227 0.0433 0.0352 -0.0322

(0.0437) (0.0759) (0.0500) (0.0283) (0.0334) (0.0393)
Constant 0.734∗∗∗ 0.707∗∗∗ 0.755∗∗∗ 0.679∗∗∗ 0.678∗∗∗ 0.607∗∗∗ 0.742∗∗∗ 0.731∗∗∗ 0.700∗∗∗

(0.00714) (0.00761) (0.0220) (0.00661) (0.0114) (0.0164) (0.00482) (0.00602) (0.0179)

N 1020 510 510 728 339 389 1392 672 720

Standard errors in parentheses

Individual-level clustering
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Differencet−1 to be negative and statistically significant. For example, when a participant voted

with a posterior higher than the rest of the group, group influence would lead the difference to be

positive: if the participant is influenced by the group’s decisions, she should decrease the posterior

with which she casts her vote in the next round. Table 9 here illustrates that there is no such

adjustment.

3.9 Demand for Agency: Second and Third Voters

Table 10 presents a regression similar to the one discussed in the the main text. The dependent

variable here is the difference between the posterior of the third and second vote. Since in the

majority treatment only two votes are required for a decision to be made, this regression utilizes
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data only from the unanimity treatment and the simulated individual treatment.8

Table 10: Stopping Posteriors: Third and Second Voters

(p3 − p2)
Constant 0.186∗∗∗

(0.0204)
dU -0.0794

(0.0498)
p2 -0.548∗∗∗

(0.0492)
p2 × dU 0.100∗

(0.0561)
Last 15 0.0228∗∗∗

(0.00765)
Last 15×dU -0.00942

(0.00780)
Slow -0.00672

(0.0221)
Slow×dU -0.00266

(0.0126)

N 330518

Standard errors in parentheses

Process-level clustering
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

As can be seen, there is no statistically significant difference between the intercepts in the

simulated individual treatment and in the unanimity treatment. In contrast, the coefficient of

p2 × dU is statistically significant at the 10% significance level. Thus, the unanimity treatment is

associated with a slightly flatter slope than the simulated individual treatment. However, since its

intercept is also lower, the difference between the two remains rather small.

3.10 Declining Best Responses

The logic is simple: a rational voter grouped with individuals exhibiting declining thresholds effec-

tively faces a constrained problem. The induced constraint reduces the voter’s continuation value,

but does not affect the value of voting immediately and stopping. Hence, interacting with other

participants with declining thresholds increases the relative appeal of voting earlier.

Using the notation introduced in Section 2, consider a rational voter whose individually optimal

decision thresholds are (g∗, G∗). This voter interacts with two other group members. Assume, for

the moment, that the first of these two follows a threshold strategy (with either stationary or

declining thresholds for either alternative) and that she is always the first to vote. Suppose the

8Since p1 can take values between 0.5 and 1, before running the regression, we re-normalize all the values of p1 by
subtracting 0.5. Thus, the intercept corresponds to the additional posterior the third voter places when the second
voter cast a vote with a posterior of 0.5.
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third voter has declining decision thresholds. She votes for A at time t when θ ≥ G (t) and votes

for B at time t when θ ≤ g (t), with G (t) > g (t) for all t, G(t) and −g(t) decreasing in t, where

G
(
t̂
)

= G∗ and g
(
t̂
)

= g∗ for some t̂.

Under majority rule, after time t̂, a rational voter is constrained by the presence of the third

voter. In effect, she is constrained to choose A between [0, G (t)] and B between [g (t) , 0]. Let

(g̃ (t) , G̃ (t)) denote an optimal solution to this constrained stopping problem. Although the solu-

tion does not have a closed-form expression, it is straightforward to see that g̃ (t) ≥ g∗ for all t.

Let V (t, θ) and Ṽ (t, θ) denote the value functions of the unconstrained and constrained stopping

problems, respectively, at time t with log-likelihood ratio θ. Recall that (g∗, G∗) is the unique opti-

mal solution in the unconstrained case, and that any feasible stopping strategy in the constrained

case is also feasible in the unconstrained case. If g̃ (t) < g∗ at some t, then for θ ∈ (g̃ (t) , g∗), we

must have Ṽ (t, θ) < V (t, θ) = D (θ), where D(θ) stands for the immediate payoff from voting for

B. This inequality contradicts the supposition that (g̃ (t) , G̃ (t)) is optimal, as the voter can choose

to stop at t when the belief is θ. Similar reasoning shows that G̃ (t) ≤ G∗ for all t.

This discussion suggests that a pivotal voter who expects others to use declining thresholds may

choose lower standards of accuracy, leading to faster decisions under majority rule.9 By contrast,

under unanimity rule, the rational voter is pivotal and unconstrained by the decisions of the other

two voters after t̂. Hence, she will simply follow her individual optimal rules after t̂. In this case, the

group decision will be decided by the third-order statistic of the individual thresholds and coincide

with that of a simulated group that comprises the same three voters.
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