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Abstract

A manufacturer seeks to license a product to downstream competitors with un-
known productivities. She can design a mechanism to allocate licenses to one or
multiple competitors. We identify the revenue-maximizing mechanism and show
it can be implemented through an interval auction: the highest bidder is exclusively
licensed if their bid is much higher than others, but multiple bidders are licensed
otherwise. This mechanism does not allocate efficiently, and we characterize the
distributions of buyer valuations that lead to over- or under-licensing. If buyers
arrive over time, the seller may delay licensing, and we show that the seller only
commits to exclusive contracts if she is less patient than the buyers.
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1 Introduction

Consider BioNTech developing the next-generation mRNA vaccine and deciding how
to license this technology to two rival pharmaceutical companies: Pfizer and Johnson &
Johnson (J&J). Each company privately understands the benefits the technology would
bring to their vaccine development efforts. While BioNTech could license the technol-
ogy to both Pfizer and J&J, doing so would reduce each company’s competitive edge
due to increased rivalry in the vaccine market. If BioNTech’s objective is to maximize
profits from this licensing, should it commit to exclusivity by auctioning the license
to the highest bidder? Should it set a fixed price and offer the license to both com-
panies? Or is there a better approach? This paper examines the revenue-maximizing
mechanisms in such scenarios.

In many markets—such as information sales, franchise licensing, and government
procurement—sellers face similar trade-offs. Should OpenAI allow only Apple to inte-
grate ChatGPT, only Android, or both? Should Bloomberg provide proprietary market
trend data exclusively to a top investment bank, to a hedge fund, or to anyone willing
to pay? Should Intel sell its processors exclusively to Dell or offer them to multiple
manufacturers? All these cases share three critical features: the seller is able to repli-
cate the good, there are externalities between the buyers, and the buyers hold private
information about their profits. Despite the prevalence of these scenarios, the seller’s
optimal strategy remains largely unknown. We aim to bridge this gap.

We begin our analysis by modeling competitive profits, relevant when licenses are
issued to more than one buyer, as a proportion of monopoly profits. In this setup,
each buyer’s profit depends only on their private type and the number of competitors
licensed. This framework effectively captures various market scenarios while main-
taining analytical tractability. Moreover, it underscores a key assumption in this pa-
per: while buyers have private information about their own valuations, the market
structure, which captures the externalities among buyers, is common knowledge. As
a result, the seller knows how to map buyers’ valuations to outcomes when allocating
the good to multiple buyers.¹

Our first result identifies the optimal direct mechanism that maximizes the seller’s
profit. While our results hold for any number of buyers, we illustrate here the main
intuition using the case of two buyers. This mechanism allocates the good to a single

¹It is not essential for the seller to know the market structure; it suffices that buyers know it. We
demonstrate that alternative implementations can achieve profit-maximizing outcomes even when the
seller lacks knowledge of the market structure.
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buyer when their private valuation significantly exceeds that of the other and allocates
it to both buyers otherwise. To implement the mechanism in dominant strategies, we
introduce what we term an interval auction. In an interval auction, each buyer submits
a bid, around which specific neighborhoods are defined. If a bid is below the neighbor-
hood of the competitor’s bid, that buyer is excluded and incurs no cost. If a bid falls
within the neighborhood of the competitor’s bid, both buyers are awarded the good
and pay the lowest price consistent with them being in their competitor’s neighbor-
hood. Finally, if a bid exceeds the neighborhood of the competitor’s bid, that bidder
alone is awarded the good, paying a premium for it. Thus, in this auction, it is not only
the highest bid that matters; the entire distribution of bids influences outcomes. If the
bids cluster closely, multiple licenses are awarded; if they are widely dispersed, only
the highest bidder receives a license. Despite the inherent complexities of the seller’s
allocation problem, our findings reveal that implementation is relatively simple, mak-
ing it a viable option for real-world application.

Next, we characterize inefficiencies absent in standard auctions. In our setup, the
seller may either under or over-provide the good—selling to fewer or more buyers than
would be optimal under symmetric information. In standard auctions with symmetric
buyers, inefficiencies emerge only when virtual valuations are non-increasing or neg-
ative. As long as virtual valuations are monotonic, the auctioneer’s most valuable bid-
der remains unchanged regardless of whether buyers have private information or not.
However, when the auctioneer can sell to multiple buyers, the optimal allocation un-
der symmetric information is governed by the ratio of valuations, whereas with private
information, it is determined by the ratio of virtual valuations. It is this discrepancy
between the two ratios that drives inefficiencies. We find that these inefficiencies are
ubiquitous: the optimal mechanism is efficient if and only if the distribution of buy-
ers’ types belongs to the Pareto family. Importantly, we establish a link between the
shape of the distribution of buyers’ types and the nature of the inefficiency—whether
the good is under or over-provided—that holds for any level of externality. Put simply
our result reveals that a policymaker can assess whether a good will be over or under-
supplied in a market based solely on the distribution of valuations without needing to
know about market conduct or the magnitude of externalities.

Focusing on the two-buyer case, we extend our analysis by adapting the baseline
model to a dynamic framework where bidders arrive sequentially over time. In this
setup, our key assumption is that once a seller grants a license to a buyer, they cannot
revoke it later. Under the optimal dynamic mechanism, when the first buyer arrives,
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the seller either grants them a license if their type is high enough or asks them to wait
for the other buyer. When the seller faces both buyers, the profit-maximizing allocation
aligns with that of the static model. It turns out that it is never optimal for the seller
to promise future exclusivity to an early-arriving buyer. We find that in the dynamic
environment, asymmetric information creates an additional inefficiency. It affects not
only the number of licenses issued, as in the static case, but also influences which initial
buyers are or are not issued a license upon arrival. Buyers who would receive licenses
immediately under complete information might be asked to wait, or vice versa. Con-
cretely, we observe that sellers tend to over-wait when they under-provide licenses and
under-wait when they over-provide. Once again, we establish a direct link between
these inefficiencies and the shape of the distribution of buyer valuations using the ex-
act same conditions established in the static model. A policymaker can narrow their
concerns simply by understanding this distribution.

We then consider a scenario where the seller is less patient than the buyer, under the
assumption that payments are made upfront and flow from the buyer to the seller. In
this setup, the seller offers the initial buyer a contract that specifies different allocation
rules for each period. Revenue maximizing allocation cutoffs are proportional to those
in the static model but become progressively more favorable to the initial buyer over
time. There is a finite period in the future beyond which—if the other buyer has not
yet arrived—the seller guarantees exclusivity to the current buyer. However, even in
this case, the exclusive contract is offered only at a point sufficiently far in the future.
In other words, we find that it is challenging to justify contracts that offer immediate
exclusivity to buyers.

Finally, in the two-buyer case, we extend the static model to accommodate more
general profit functions with supermodular returns from exclusivity. We then extend
the framework to account for interdependencies, where a buyer’s profits, when win-
ning with others, depend not only on their own type but also on the types of their
competitors. This adjustment shifts the analysis from independent to common value
auctions. We identify sufficient conditions on preferences and distributions that ensure
the optimality of our mechanism.

The remainder of the paper is organized as follows: In Section 2, we begin our
analysis with the baseline model. In Section 3, building on insights from the previous
section, we examine a dynamic version of the model. In Section 4, we extend the model
to account for more general profit functions as well as interdependent valuations. We
consider applications in Section 5, and conclude in Section 6.
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1.1 Related Literature

PatentLicensing Ourpaper relates to a body ofwork onpatent licensing in oligopolis-
tic downstream industries (Kamien andTauman, 1986; Katz and Shapiro, 1986; Kamien
et al., 1992; Sen and Tauman, 2007; Li and Wang, 2010; Doganoglu and Inceoglu,
2014).² These papers conduct their analysis under no ex-ante uncertainty regarding
the types of buyers. In contrast, in our setup, while the distribution of buyers’ types is
common knowledge, their realized values are private. The role of informational asym-
metry is taken seriously in later works such as Choi (2001), Poddar et al. (2002), and
Sen (2005), which allow for asymmetric information but consider only a monopolistic
buyer.³ On the other hand, allowing for multiple buyers, Antelo and Sampayo (2017)
studies a signaling problem, while Antelo and Sampayo (2024) studies a screening
problemwhere the types of buyers can be high or low.⁴ Both the earlier andmore recent
studies focus on identifying optimal licensing strategies within a range of mechanisms,
such as determining the optimal fees, setting the optimal reservation price in a first-
price auction, and establishing the optimal royalties. In contrast, our work identifies
the optimal mechanism from the entire set of feasible options.

Within the licensing literature, of relevance for our static setup is thework of Schmitz
(2002), who considers selling a license to two potential buyers. They determine the
profit-maximizingmechanismandhighlight that potential inefficienciesmay arise from
information asymmetries. Differently from this paper, we characterize precisely when
such inefficiencies arise, allow for more than two buyers, study a dynamic version, and
allow for general profit functions, including cases with interdependent types.

MechanismDesign with Externalities Our paper relates to mechanism design liter-
ature with externalities, particularly Jehiel et al. (1996) and Jehiel et al. (1999), which
study multidimensional settings with unknown market structures. In contrast, we
model the market structure as a function of buyers’ types, reducing dimensionality
and improving tractability for a full characterization of the optimal mechanism. Ad-
ditionally, our approach permits multiple sales of the good and considers externalities
based on the opponent’s realized type, not just their identity.

Relevant to our work is Dana Jr and Spier (1994), who examine mechanisms for

²For an early survey, see Kamien (1992).
³There is also a literature that incorporates asymmetric information where the quality of the innova-

tion/license is not fully known to the buyers (Zhang et al., 2016; Jeon, 2019; Wu et al., 2021).
⁴Differently from this body of work, Heywood et al. (2014) and Fan et al. (2018) consider a setup in

which the seller is an active competitor in the market.
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auctioning licenses for production rights to one or two producers. Similar to our find-
ings, they show the optimal number of licenses is determined endogenously, with in-
efficiencies due to information asymmetries. However, in their setup, inefficiencies
solely lead to underprovision, with monopolies being assigned more frequently than
duopolies. In contrast, in our setup, inefficiencies can occur in either direction, and
we precisely characterize when they arise. We further differ by identifying a dominant
strategy implementation, reducing the seller’s required information disclosure, and en-
abling portability to a dynamic framework without dynamic disclosure concerns. We
then finally differ from this work by studying a dynamic setup.

Of relevance is also Jehiel and Moldovanu (2000), who study auctions with down-
stream interactions among buyers. Like our work, they model outcomes as a function
of buyers’ types, but unlike us, they focus on the sale of a single unit and focus their
analysis on second-price, sealed-bid auctions.

Auctions with Common Values Our work also relates to the literature on auctions
with common values, including classic studies by Milgrom and Weber (1982) and Bu-
low and Klemperer (1996), as well as more recent approaches that identify the optimal
mechanism under specific setups, such as Bergemann et al. (2020).⁵ We differ from this
body of literature by allowing for the sale of multiple goods.

MultiUnitAuctions Finally, our setup shares similaritieswith the literature onmulti-
unit auctions and bundling. In particular, the decision to offer two licenses to two dif-
ferent buyers, which reduces their individual payoff, rather than a license to one buyer
is akin to the decision of selling goods to two or one buyer (Armstrong, 2000; Avery and
Hendershott, 2000). We diverge from that setup in several ways. First, by assuming
the market structure is known, and focusing on buyers’ productivities as their types,
we reduce the dimensionality of the type space—each bidder is no longer associated
with different marginal values for each additional item. We also extend beyond the
standard multi-unit auction approach by incorporating dynamics and by allowing for
interdependent valuations of the goods.

⁵This work differs from studies where the correlation lies on bidders’ signals rather than directly in
their valuations. Such a scenario was explored even by Myerson (1981), who illustrated that if bidders’
private information is correlated, the seller can design a mechanism to extract the full surplus. Crémer
and McLean (1985) demonstrated that Myerson’s example has broad applicability, and subsequent re-
search, including Crémer andMcLean (1988), McAfee et al. (1989), andMcAfee and Reny (1992), further
established that this result holds under even more general conditions.

5



2 The Setup

An auctioneer has an item to sell to 𝑁 potential buyers, indexed in 𝒩 = {1, ..., 𝑁}. This
item differs from standard commodities in two key ways. First, it generates external-
ities: buyers’ valuations of the product depend on how many other buyers purchase
it. Second, the item can be replicated at no cost—allowing the seller to sell to multiple
buyers. Consider the 2𝑁 possible subsets of 𝒩, which we denote by 𝒥, and let the ℓ th

subset be denoted by 𝒥ℓ . The cardinality of 𝒥ℓ is represented by |ℓ|. For any subset
𝒥ℓ ⊆ 𝒩, the payoff of buyer 𝑖 ∈ 𝒥ℓ , when only members of 𝒥ℓ are allocated the good is
given by

𝑢(𝜃𝑖,𝒥ℓ) = 𝜃𝑖𝛼|ℓ|.

We normalize the payoffs of agents who are not allocated the good, 𝑖 ∉ 𝒥ℓ , to zero—
effectively excluding them from this market. Thus, utilities are characterized by a pri-
vate benefit from purchasing the good 𝜃𝑖 and an externality coefficient determined by
the number of winners 𝛼|ℓ|. We assume that 𝛼𝑘 ≥ 𝛼𝑘+1 for any 𝑘 < 𝑁. That is, as
the size of the winning group grows, the payoffs of the winning members shrink. Let
𝑎 = {𝛼1, 𝛼2,… , 𝛼𝑁} represent the vector of externality coefficients. Our main assump-
tion is that 𝑎 is common knowledge, while each agent’s taste for the good is private
information.⁶

An allocation is a distribution on the family of subsets of 𝒩, 𝜎 ∈ Δ𝒥, and due
to replicability, the auctioneer can supply any of these subsets. Given the setup, the
revelation principle applies, allowing us to focus on identifying the truthful direct rev-
elation mechanism that maximizes revenue.

Finally, each 𝜃𝑖 is assumed to be independently drawn from a distribution with a
differentiable cumulative function 𝐹, with density 𝑓 , and full support on [𝜃, 𝜃] for some
𝜃 > 0. Define the virtual valuation of a buyer in the usual way: 𝑣(𝜃) = 𝜃 − 1−𝐹(𝜃)

𝑓(𝜃) .
We maintain throughout the paper the standard assumption that the distribution 𝐹 is
regular, that is, 𝑣(𝜃) is a strictly increasing function.

2.1 First Best Allocation

We start by establishing the revenue-maximizing allocation under symmetric informa-
tion. If the principal knows the vector 𝜃 = (𝜃1, ..., 𝜃𝑁), she chooses transfers 𝑟 𝑖 and an

⁶As we show later, the principal does not need to be the one who knows the magnitude of the exter-
nalities. The optimal mechanism can be implemented even if only the buyers know 𝑎.
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allocation 𝜎 to solve:

max
𝜎∈Δ𝒥,{𝑟𝑖}𝑖=1,...,𝑁


𝑖

𝑟 𝑖

s.t. 𝜃𝑖 
ℓ∶𝑖∈𝒥ℓ

𝜎ℓ𝛼|ℓ| − 𝑟 𝑖 ≥ 0 for all 𝑖 = 1,… ,𝑁 (IR)

It is clear that (IR) must hold with equality in any solution. Thus, the problem
can be simplified to an accounting problem: the seller considers the maximal gross
payoff that buyers can obtain across all possible groups and extracts all revenues. As
usual, the revenue-maximizing allocation under symmetric information is alsowelfare-
maximizing, so we call it the first-best allocation.

The principal’s problem can be easily illustrated when 𝑁 = 2, as shown in Figure
1. In this case, we normalize the payoff from being allocated the good exclusively to
𝜃𝑖, while 𝛼𝜃𝑖 represents the payoff when the good is shared between both buyers. It is
optimal to sell solely to buyer 𝑖 if 𝜃𝑖

𝜃𝑗 ≥ 𝛼
1−𝛼 . On the other hand, selling to both buyers

𝑖 and 𝑗 is optimal if 𝛼
1−𝛼 ≥ 𝜃𝑖

𝜃𝑗 ≥
1−𝛼
𝛼 . Importantly, the optimal allocation is determined

by the ratio of valuations 𝜃𝑖/𝜃𝑗 .

Figure 1: First Best Allocations

Notes: The figure above displays the first-best allocations for different realized values of 𝜃𝑖 and 𝜃𝑗 . In the
left panel, it is efficient to allocate the good exclusively to agent 𝑗. In the middle panel, it is efficient to
allocate the good to both agents, while in the right panel, it is efficient to allocate exclusively to agent 𝑖.
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2.2 Revenue-Maximization under Asymmetric Information

Next, we characterize the revenue-maximizingmechanismwhen the seller does not ob-
serve the realized profile of buyer types, 𝜃. Our first observation is that we can change
the space of allocations for each buyer from Δ𝒥 to an interval in ℝ. To see this, start
with any allocation 𝜎 ∈ Δ𝒥. This allocation leads to the following expected gross payoff
for agent 𝑖:

𝔼𝜎[𝑢(𝜃,𝒥ℓ)] = 𝜃𝑖 
ℓ∶𝑖∈𝒥ℓ

𝜎ℓ𝛼|ℓ|


𝑞𝑖(𝜎)

We call 𝑞𝑖(𝜎) an assignment. Let 𝑞(𝜎) be the vector of assignments. Then, if Δ𝒥 is the
set of feasible allocations, we can define the associated feasible assignment set as

𝒬 = 𝑞 ∈ ℝ𝑁 ∶ ∃𝜎 ∈ Δ𝒥, 𝑞 = 𝑞(𝜎) .

For any set 𝒥ℓ , let 1ℓ be a vector in which the 𝑖 − 𝑡ℎ entry is 1 if and only if 𝑖 ∈ 𝒥ℓ . It is
clear that:

Lemma 1. 𝒬 = co 𝛼|ℓ|1ℓ ∶ ℓ ∈ {1,… , 2𝑁}. 𝒬 is a convex polytope.

This transformation allows us to identify conditions for implementability by using
the standard Myersonian approach. For an assignment 𝑞𝑖 define an expected assign-
ment 𝑄𝑖,

𝑄𝑖(𝜃𝑖) = 𝑞𝑖 (𝜎 (𝜃𝑖, 𝜃−𝑖)) 𝑑𝐹−𝑖(𝜃−𝑖),

and

𝑈𝑖(𝜃𝑖) = 𝜃𝑖𝑄𝑖(𝜃𝑖) − 
⎡⎢⎢⎢⎢⎣

ℓ

𝜎ℓ(𝜃𝑖, 𝜃−𝑖)𝑟 𝑖ℓ(𝜃𝑖, 𝜃−𝑖)
⎤⎥⎥⎥⎥⎦
𝑑𝐹−𝑖(𝜃−𝑖)


𝑅𝑖(𝜃𝑖)

.

The expected utility of agent 𝑖, given their realized value 𝜃𝑖, is the net gains minus the
expected transfer.

Lemma 2. An allocation 𝜎 is implementable if and only if the following conditions hold:

1. Monotonicity: 𝑄𝑖 is increasing for all 𝑖;

2. Envelope Condition: 𝑈𝑖(𝜃𝑖) = 𝑈𝑖(𝜃) + ∫
𝜃
𝜃 𝑄𝑖(𝑣)𝑑𝑣;

3. Individual Rationality: 𝑈𝑖(𝜃𝑖) ≥ 0 for all 𝑖, 𝜃𝑖;
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4. Feasibility: 𝑞(𝜎) ∈ 𝒬.

This represents the usual set of conditions for implementability, with the exception
of feasibility. Unlike in standard auctions that confine allocation probabilities to the
unit simplex (Myerson, 1981), our feasibility condition requires trade probabilities lie
within the polytope𝒬, which in general extends beyond the unit simplex. The problem
of the principal then reduces to

max
𝑈𝑖 ,𝑄𝑖 ,𝑞𝑖


𝑖

⒧𝜃𝑖𝑄𝑖(𝜃𝑖) − 𝑈𝑖(𝜃𝑖)⒭ 𝑓(𝜃)𝑑𝜃

s.t. 1 − 4.

Recall that the virtual valuation of a type 𝜃𝑖 agent is 𝑣(𝜃𝑖). Following the standard
integration by parts approach, the problem of the principal becomes

max
𝑞𝑖


𝑖

𝑣(𝜃𝑖)𝑞𝑖(𝜃)𝑓(𝜃)𝑑𝜃

s.t. 1 and 4.

The next proposition characterizes the assignment in the optimal mechanism, as a
consequence of the steps above. For each realization of buyers’ private information,
there is no loss of generality in reordering buyers so that 𝜃1 ≥ 𝜃2 ≥ ... ≥ 𝜃𝑁 . Define
𝛼0 = 0, with the interpretation that the seller can always choose to exclude all the
buyers to obtain 0 revenues.

Proposition 1. In the optimal mechanism, assignments satisfy:

𝑞𝑖(𝜃) =
⎧⎪⎨⎪⎩

𝛼𝑘∗(𝜃) 𝑖𝑓 𝑖 ≤ 𝑘∗(𝜃)
0 otherwise

𝑘∗(𝜃) ∈ arg max
𝑛∈{0,1,…,𝑁}

𝛼𝑛

𝑘


𝑖=1

𝑣(𝜃𝑖).

The optimal assignment can be reinterpreted as a deterministic allocation. The
seller serves a set of size 𝑘∗(𝜃), consisting of the highest 𝜃𝑖 values. Therefore, she only
needs to evaluate 𝑁 possible outcomes that differ in the number of buyers. The profit-
maximizing outcome depends on the externality coefficients, 𝛼, as well as the realized
types of buyers, 𝜃. Again, it is easy to illustrate these allocations for 𝑁 = 2, where they
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satisfy

(𝑞1, 𝑞2)(𝜃) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1, 0), if 𝑣(𝜃1)
𝑣(𝜃2) ≥

𝛼
1−𝛼

(𝛼, 𝛼), if 𝛼
1−𝛼 ≥ 𝑣(𝜃1)

𝑣(𝜃2) ≥
1−𝛼
𝛼

(0, 1) , otherwise

. (1)

In the𝑁 = 2 case, if 𝜃1 is much larger than 𝜃2, the seller finds it optimal to sell to buyer
one exclusively, or vice versa if 𝜃2 is much larger than 𝜃1. The intuition is as follows.
When 𝜃1 is much larger than 𝜃2, the additional profit from including the second buyer,
𝛼𝑣(𝜃2), is relatively small. However, by including the second buyer, the seller reduces
the amount she can extract from the first buyer, from 𝑣(𝜃1) to𝛼𝑣(𝜃1). Therefore, when𝜃1
is much larger than 𝜃2, this tradeoff becomes unfavorable, leading the seller to exclude
the second buyer. On the other hand, when 𝜃1 and 𝜃2 values are relatively close, the
seller finds it optimal to sell to both. This is because 𝛼(𝜃1 + 𝜃2) will be larger than
max{𝜃1, 𝜃2}, which follows from 𝛼 ≥ 1

2 .

2.3 Inefficiencies

In standard auctions with a single item for sale, asymmetric information can cause
inefficiencies in two main ways. First, if agents are heterogeneous or if their virtual
valuations are not increasing, it is possible that a bidder with a lower valuation wins
the auction, causing an ex-post inefficient allocation. The second type of inefficiency
arises if virtual values can be negative. If the realized virtual values are negative across
all agents, the good remains unsold even if all agents value it more than the seller. Our
setup introduces inefficiencies that do not occur in traditional auctions. Note that we
assume that all agents draw their types from the same regular distribution 𝐹, which
eliminates the first inefficiency. In this section, to distinguish our inefficiencies from
the ones in conventional auctions, we further assume that virtual values are positive so
that exclusion is never optimal in the standard setting.

Definition 1. Let 𝑘𝑓(𝜃) be the size of the first-best optimal group of buyers when private
information is 𝜃. The revenue-maximizing mechanism under-(over-) provides if, for all 𝜃:

𝑘∗(𝜃) ≤ (≥) 𝑘𝑓(𝜃).

An allocation is efficient if equality holds above.

Define 𝜆(𝜃𝑖) ≡ 𝑓(𝜃𝑖)
1−𝐹(𝜃𝑖)𝜃𝑖.⁷

⁷Which can be interpreted as the price-elasticity of demand. To see this, consider setting a price 𝜃𝑖
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Proposition 2. Assume 𝑣(𝜃) ≥ 0. The profit-maximizing mechanism

• Is Efficient for all values of 𝑎 if and only if 𝜆 is constant — that is, 𝐹 is in the Pareto
family.

• Under-provides for all values of 𝑎 if and only if 𝜆 is increasing.

• Over-provides for all values of 𝑎 if and only if 𝜆 is decreasing.

The above proposition implies that the profit-maximizingmechanismwill prescribe
the same allocation as the first-best outcome for any 𝛼 and any realized type values if
and only if the buyer’s types are distributed according to the Pareto family. While it
is known from previous work, such as Jehiel et al. (1996) and Schmitz (2002), that
information asymmetries can lead a profit-maximizing monopolist to over-provide a
good, our paper is, to the best of our knowledge, the first to characterize when such
inefficiencies occur, based on the distribution of buyers’ types. To build some intuition
about this result, we once again go back to an𝑁 = 2 example. Note that, in contrastwith
the first-best outcome, the behavior of the principal is no longer dictated by the ratio of
valuations 𝜃𝑖/𝜃𝑗 . Rather, the slope of the seller’s iso-profit curve is now determined by
the ratio of virtual valuations 𝑣(𝜃𝑖)/𝑣(𝜃𝑗 ). There is, of course, no reason for these two ratios
to be the same, especially not for any realization of 𝜃𝑖 and 𝜃𝑗 . In particular, 𝜃1

𝜃2 = 𝑣(𝜃1)
𝑣(𝜃2)

for all vectors 𝜃 if and only if 𝑣 is linear. We complete the proof by showing that 𝑣 is
linear if and only if 𝐹 belongs to the Pareto family. To see that, assume 𝑣(𝜃) = (1 − 1

𝜆 )𝜃,
𝜆 > 0. We then have:

𝜃 − 1 − 𝐹(𝜃)
𝑓(𝜃) = ⒧1 − 1

𝜆⒭ 𝜃.

Solving this differential equation yields the unique solution:

𝐹(𝜃) = 1 − 𝑐𝜃−𝜆,

which is the CDF of a distribution in the Pareto family. For any other distribution,
the two ratios highlighted above will differ at least for some realizations. We show
two such examples in Figure 2. The figure illustrates the profit-maximizing and the
first-best allocations for different realized values of 𝜃𝑖 and 𝜃𝑗 . In the left panel, when
behavior is governed by the ratio of valuations 𝜃𝑖/𝜃𝑗 , it is efficient to allocate the good to
both agents. However, in the case of asymmetric information, as previously discussed,

to a buyer who draws his evaluation from 𝐹(𝜃). The probability that they will purchase—demand—will

be 1 − 𝐹(𝜃𝑖), leading to %Δ𝑄
%Δ𝑃 =

𝑑(1−𝐹(𝜃𝑖 ))
𝑑𝜃𝑖

1−𝐹(𝜃𝑖 )
𝑑𝜃𝑖
𝑑𝜃𝑖
𝜃𝑖

= 𝑓(𝜃𝑖)
1−𝐹(𝜃𝑖)𝜃𝑖
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Figure 2: Examples of Under and Overprovision

Notes: The figure above displays the profit-maximizing and the first-best allocations for different re-
alized values of 𝜃𝑖 and 𝜃𝑗 . In the left panel, it is efficient to allocate the good to both agents, but it is
profit-maximizing to allocate the good to agent 𝑖 exclusively—underprovision. In the right panel, it is
efficient to allocate exclusively to agent 𝑖, but it is profit-maximizing to allocate to both—overprovision.

behavior is driven by the ratio of valuations 𝑣(𝜃𝑖)/𝑣(𝜃𝑗 ), leading to the good being allo-
cated exclusively to agent 𝑖 as the profit-maximizing outcome. Consequently, the good
is underprovided. In the right panel, it is efficient to allocate the good exclusively to
agent 𝑖, but profit maximization dictates allocating to both agents. Thus, the good is
overprovided. The potential for overprovision and underprovision is not only theoret-
ical; there exists a nonempty set of distributions for which either outcome is possible,
Figure 3 presents two such examples.

The figure displays the profit-maximizing and the first-best allocations for differ-
ent values of 𝜃𝑖 and 𝜃𝑗 . The shaded blue(orange) areas indicate the regions where the
good is provided to both agents under the first-best(profit-maximizing) allocation. On
the left panel, the shaded orange region is contained within the shaded blue region,
indicating that there are realizations of 𝜃𝑖 and 𝜃𝑗 for which both agents would receive
the good under the first-best allocation, but only one agent receives it under the profit-
maximizing allocation, leading to underprovision. Conversely, in the example on the
right, the shaded blue region is contained within the shaded orange region, indicat-
ing that there are realizations of 𝜃𝑖 and 𝜃𝑗 for which an agent would receive the good
exclusively under the first-best allocation, but both agents receive it under the profit-
maximizing allocation, leading to overprovision. Thus, there exists a nonempty set of
distributions for which either outcome is possible.

We reiterate that these inefficiencies, whether they involve under- or over-provision
of the good, are absent in standard auctions. To underscore that typical inefficiencies

12



Figure 3: Examples of Distributions leading to Under and Overprovision

Notes: The figure above illustrate the profit-maximizing and first-best allocations. The shaded
blue(orange) areas indicate the regions where the good is provided to both agents under the first-
best(profit-maximizing) allocation. The distributions used in each example are shown at the top of the
graphs, with 𝛼 = 0.56.

are not the drivers of these results, we have assumed that all agents draw their types
from the same distribution 𝐹 and that virtual values are positive and increasing. Under
these assumptions, standard auctions do not exhibit inefficiencies. Yet, in this setup,
over- or under-provision can occur.

What is additionally interesting is that these inefficiencies are entirely driven by
the distribution of buyers’ types. Proposition 2 directly links over- or under-provision
to the distribution of buyer types without referencing market conduct (the size of ex-
ternalities, 𝛼). Therefore, a policymaker concerned about over- or under-provision in
a particular market can draw conclusions about potential inefficiencies simply by un-
derstanding the distribution of valuations—effectively by estimating demand.

2.4 Implementation

Next, we turn to the implementation of the optimal mechanism. In particular, we
search for a protocol that (i) implements the optimal allocation truthfully and in dom-
inant strategies and (ii) does not require payment from excluded agents. We define a
class of auctions, which we dub interval auctions, that satisfy these two requirements.

Definition 2. An interval auction has two stages. In the first stage, each potential buyer,
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𝑖, submits a bid 𝑏𝑖. In the second stage, the seller defines a set of thresholds for each potential
buyer, that does not depend on buyer 𝑖’s bid: 𝜏𝑖𝑁 ≤ 𝜏𝑖𝑁−1 ≤ ... ≤ 𝜏𝑖1, such that the allocation
and transfers as functions of buyers’ 𝑖 bid are:

𝑞𝑖 = 𝛼𝑘1𝑏𝑖∈(𝜏𝑘 ,𝜏𝑘−1]
𝑟𝑖 = 1𝑏𝑖∈(𝜏𝑘 ,𝜏𝑘−1]

𝑁


𝑗=𝑘

(𝛼𝑘 − 𝛼𝑘+1) 𝜏𝑘

Proposition 3. The optimal mechanism is implemented in dominant strategies by an inter-
val auction.

In other words, the optimal allocation can be implemented truthfully and in dom-
inant strategies without loss of revenue to the seller. The fact that the mechanism is
implemented in dominant strategies plays a key role in making the auction rules fairly
straightforward for the bidders. From the bidders’ perspective, as long as the thresh-
olds are monotonic and independent of their own bids, they would submit the same
bids regardless of how these thresholds were constructed. That is to say, all the prin-
cipal needs to convey to the potential buyers is that the thresholds she sets will not
depend on their private bid. Thus, the principal does not need to burden the bidders
with the precise construction of the thresholds, making the protocol straightforward
from the bidder’s point of view.

Once again, illustrating the implementation for 𝑁 = 2 can help build intuition.
When 𝑁 = 2, the interval auction that implements the revenue-maximizing outcome
is the following: for each bid 𝑏𝑖 there exist thresholds 𝜏(𝑏−𝑖) < 𝑏−𝑖 < 𝜏(𝑏−𝑖) such that

𝑞𝑖 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if 𝑏𝑖 > 𝜏(𝑏−𝑖)

𝛼 if 𝜏(𝑏−𝑖) > 𝑏𝑖 > 𝜏(𝑏−𝑖)

0 otherwise

, 𝑟𝑖 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝛼𝜏(𝑏−𝑖) + (1 − 𝛼)𝜏(𝑏−𝑖) if 𝑏𝑖 > 𝜏(𝑏−𝑖)

𝛼𝜏(𝑏−𝑖) if 𝜏(𝑏−𝑖) > 𝑏𝑖 > 𝜏(𝑏−𝑖)

0 otherwise

,

where 𝜏(𝑏−𝑖) = 𝑣−1 ⒧1−𝛼𝛼 𝑣(𝑏−𝑖)⒭, and 𝜏(𝑏−𝑖) = 𝑣−1 ⒧ 𝛼
1−𝛼𝑣(𝑏−𝑖)⒭.

The mechanism works as follows: both agents are asked to submit bids. Assume,
without loss, that 𝑏1 ≥ 𝑏2. If 𝑏1 < 𝜏(𝑏2), then allocate the good to both agents, who pay
𝛼𝜏(𝑏−𝑖) each. If 𝑏1 ≥ 𝜏(𝑏2), then allocate the good to the first bidder only. This bidder
pays 𝛼𝜏(𝑏−𝑖) + (1 − 𝛼)𝜏(𝑏−𝑖). We visualize the workings of this mechanism in Figure 4
below.
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Figure 4: Interval Auction Implementation

𝑏−𝑖
{

𝜏(𝑏−𝑖)
}

𝜏(𝑏−𝑖)

𝑞𝑖 = 0

𝑟𝑖 = 0

𝑞𝑖 = 𝛼

𝑟𝑖 = 𝛼𝜏(𝑏−𝑖)

𝑞𝑖 = 1

𝑟𝑖 = 𝛼𝜏(𝑏−𝑖) + (1 − 𝛼)𝜏(𝑏−𝑖)
Notes: The figure above visualizes the profit-maximizing implementation via an interval auction.
Around the bid of the opponent 𝑏−𝑖 there is a n neighborhood (𝜏(𝑏−𝑖), 𝜏(𝑏−𝑖)). If the agent’s bid falls
below this neighborhood, he is excluded and pays nothing 𝑟𝑖 = 0. If his bid falls within this neighbor-
hood, both agents are allocated the good and pay 𝑟𝑖 = 𝛼𝜏(𝑏−𝑖). Finally, if an agent bid falls above this
neighborhood, he is provided the good exclusively and pays 𝑟𝑖 = 𝛼𝜏(𝑏−𝑖) + (1 − 𝛼)𝜏(𝑏−𝑖).

In this implementation, for an agent to secure exclusive rights to the good, they
must significantly outbid the other agent. Slightly outbidding the other agent results
in both agents being allocated the good. Conversely, if an agent loses by only a small
margin, both agents still receive the good. The agent is excluded only when their bid
is substantially lower than their opponent’s.⁸ Thus, unlike a standard auction, it is no
longer the case that only the highest bid matters; instead, the entire distribution of bids
determines the optimal allocation and transfers.

2.5 Revenue Comparison

We now focus on the case of 𝑁 = 2 and develop some intuition on how the revenue
of our mechanism compares with other allocation protocols. We compare our second-
pricemechanismwith two benchmarks: a posted price that guarantees full-market cov-
erage, and therefore ignores the costly externality; and a second-price auction, which
guarantees exclusivity. Because virtual valuations are assumed to be positive, the seller
can guarantee full participation by setting the price at 𝛼𝜃, where both agents purchase
the product. Through standard manipulations of the virtual value function, this rev-
enue can be expressed as

𝑅𝑝 = 𝛼𝔼 𝑣 ⒧𝜃(1)⒭ + 𝑣 ⒧𝜃(2)⒭ .

On the other hand, the revenue from a standard auction, where the designer com-
mits to selling only one product, is determined by the expected value of the second-
highest bid, which can be expressed as

⁸Notice that in this mechanism when both agents are allocated the product, the agent with the lowest
bid pays more than the agent with the highest bid. Regardless, this does not imply incentives to increase
their own bid, as their payment does not depend on their individual bid.
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𝑅𝑎 = 𝔼 𝑣 ⒧𝜃(1)⒭ .

Thus, a constrained seller who chooses between these two mechanisms would re-
ceive a revenue of

𝑅𝑐 = max{𝑅𝑝, 𝑅𝑎}.

Now, consider the seller who chooses the optimal mechanism. We know the seller
sells to the buyer with the highest realization if 𝑣(𝜃(1)) ≥ 𝛼 ⒧𝑣(𝜃(1)) + 𝑣(𝜃(2))⒭. By the
virtual-valuation representation of the seller’s revenue, in that case, the seller’s revenue
is exactly 𝑣(𝜃(1)). This simple logic establishes the following proposition, which states
that the difference between the unconstrained and the constrained revenues is precisely
quantified by a Jensen gap.

Proposition 4. The difference between the optimal revenue, 𝑅, and the revenue constrained
to a full-participation posted price or a standard auctions is

𝑅 − 𝑅𝑐 = 𝔼 max 𝑣(𝜃(1)), 𝛼 ⒧𝑣(𝜃(1)) + 𝑣(𝜃(2))⒭ −max 𝔼 𝑣(𝜃(1)) , 𝛼𝔼 𝑣(𝜃(1)) + 𝑣(𝜃(2)) .

Figure 5: Revenue Comparison

Notes: For different 𝛼 values, the graph above compares the revenue from a full-participation posted
price, a standard auction in which only one good is sold, and the optimal mechanism.

Figure 5 illustrates this comparison. For any 𝛼 ∈ (0.5, 1), interval auctions outper-
form either mechanism. Notably, as 𝛼 approaches 0.5, the likelihood of selling to a sin-
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gle agent increases—the polytope fromFigure 1 converges to the unit simplex—causing
the profits from interval auctions to align with those of a regular auction for a single
good. Conversely, as 𝛼 approaches 1, the externalities from having two active firms
diminish, leading profits to align with those from a posted price mechanism described
above. Notably, observe that these two seemingly distinct problems—selling a single
good through an auction and monopoly pricing—can be seen as specific instances of
our framework. In one extreme, externalities are so significant that the seller avoids
selling to multiple buyers; in the other, externalities are absent altogether. Our frame-
work includes both cases and also maximizes profits for the intermediate scenarios.

The figure also highlights that when externalities are so severe that the seller would
not consider selling to more than one buyer, using a traditional auction results in no
revenue loss. On the opposite end, if there are no externalities, the seller maximizes
profits by selling to all buyers, with the only optimization being the determination of
the optimal price. Consequently, it is in the intermediate cases—where externalities are
significant but not overwhelming—that ourmechanism offers themost gains compared
to more traditional alternatives.

3 Dynamic Model

In this section, we focus on the case in which there are only two agents: 𝑁 = 2. We
now consider a version of the model in which buyers arrive sequentially, so the seller
also decides the timing of license concessions. Time is discrete and runs indefinitely:
𝑡 ∈ ℕ. At any time 𝑡, with probability 𝜇, a buyer 𝑖 ∈ {1, 2} may arrive. Arrival times
are independent between buyers. Buyers discount the future at rate 𝛿, while the seller
discounts the future at rate 𝜌, with 𝜌 ≤ 𝛿. We let 𝑎𝑖 ∈ ℕ denote the arrival time of buyer
𝑖—if the buyer does not arrive, denote 𝑎𝑖 = 𝑜. A direct mechanism consists of functions
[𝑞𝑖𝑡, 𝑟 𝑖𝑡 ]𝑖={1,2},𝑡∈ℕ: an allocation 𝑞𝑖𝑡 ∶ Θ2×ℕ2 → [0, 1] and a transfer 𝑟 𝑖𝑡 ∶ Θ2×ℕ2 → ℝwhich
specify, for every buyer 𝑖, time 𝑡, types 𝜃 = (𝜃𝑖, 𝜃−𝑖), and arrival times 𝑎𝑖, 𝑎−𝑖, a number
between 0 and 1, and a value in the reals. Let 𝑐𝑖𝑡 = (𝑞𝑖𝑡, 𝑟 𝑖𝑡). We impose the following
restrictions on mechanisms:

Definition 3. A mechanism is permissible if it satisfies

1. Feasibility: for each 𝑡, (𝑞1𝑡 , 𝑞2𝑡 ) ∈ 𝒬;

2. Consistency: for 𝑎𝑖 > 𝑡, 𝑐𝑖𝑡 = 0 and 𝑐−𝑖𝑡 (𝜃𝑖, 𝜃−𝑖, 𝑎𝑖, 𝑎−𝑖) = 𝑐−𝑖𝑡 (𝜃′
𝑖 , 𝜃−𝑖, 𝑎′, 𝑎−𝑖) for all

𝜃−𝑖 ∈ Θ, 𝑎′ > 𝑡;
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3. Irreversibility: Let 𝑡′ > 𝑡 ≥ 𝑎𝑖. Then, if 𝑎𝑗 > 𝑡′, 𝑞𝑖𝑡′ ≥ 𝑞𝑖𝑡. If 𝑎𝑗 ≤ 𝑡′, then 𝑞𝑖𝑡′ ≥ 𝛼𝑞𝑖𝑡;

4. No money pumps: 𝑟 𝑖 ≥ 0.

The first condition is the same as in the static model and ensures that the assign-
ments of the product to the agents are consistently represented in the allocation. The
second condition restricts what can be offered when one agent has not yet arrived. In
particular, it must be that if a buyer has not yet arrived, they cannot be allocated the
good or be asked for any transfers. On the other hand, the allocation and transfer
of the buyer who has arrived cannot depend on the type of buyers who have not yet
arrived. The most significant restriction is irreversibility. Irreversibility implies that
once the designer allocates a license to an agent, she cannot take it back. Therefore,
the probability of being assigned a license cannot decrease over time. Thus, the only
way a buyer’s allocation can be reduced is if another buyer arrives and is also allocated
a license with some probability. The last restriction makes sure that the seller and the
buyer cannot benefit from a lending arrangement. This constraint is relevant when one
party is strictly more patient than the other, which would allow for an infinite payoff
to be achieved by the most patient party lending money to the least patient party.

We focus on cases in which agents arrive sequentially. We soon clarify that when
buyers arrive simultaneously, the optimal mechanism is the one identified in the static
model. Without loss of generality, say that agent 1 is the first to arrive. Because the
problem of the principal effectively starts at that time—due to consistency—we nor-
malize 𝑎𝑖 = 0. We also assume all transfers 𝑟, from 𝑖 happen at the time of arrival of
agent 𝑖, which is without loss of optimality given the assumptions on discount rates.
The payoff of an agent 1, who arrives first and at 0, is:

𝑈1(𝜃1) = 𝔼𝜃2

⎡⎢⎢⎢⎢⎢⎣

∞


𝑗=0

𝛿𝑗(1 − 𝜇)𝑗𝑞1𝑗 (𝜃1) +
∞


𝑗=0

𝜇(1 − 𝜇)𝑗
∞


𝑘=𝑗+1

𝛿𝑘𝑞1𝑘 (𝜃1, 𝜃2, 𝑎2 = 𝑗 + 1)
⎤⎥⎥⎥⎥⎥⎦
𝜃1 − 𝑟1(𝜃1),

The first term in the parentheses takes into account the times 𝑡 such that 𝑎2 > 𝑡, that
is buyer 2 has not yet arrived. In this case, we know that 𝑞1 does not depend on 𝜃2 or
𝑎2, by consistency, so we omit those variables. The second term takes into account the
cases when buyer 2 arrives at time 𝑗 + 1.

When the second agent arrives, their utility at time 𝑎2 is:
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𝑈2(𝜃1, 𝜃2, 𝑎2) =
⎡⎢⎢⎢⎢⎢⎣

∞


𝑗=0

𝛿𝑗𝑞2𝑎2+𝑗(𝜃1, 𝜃2, 𝑎2)
⎤⎥⎥⎥⎥⎥⎦
𝜃2 − 𝑟2(𝜃1, 𝜃2),

The seller maximizes expected revenue, discounted by 𝜌, in the set of mechanisms
that are available, incentive compatible and individually rational at the time of arrival.

Proposition 5. Normalize the arrival time of buyer 1 to 𝑡 = 0 and let 𝑎 be the arrival time
of buyer 2. There exists some �̂� < 𝜃 such that

For all 𝑡 < 𝑎,

𝑞1𝑡 (𝜃1) =
⎧⎪⎪⎨⎪⎪⎩

1, if 𝜃1 ≥ �̂�

0, otherwise,
(2)

For all 𝑡 ≥ 𝑎

(𝑞1𝑡 , 𝑞2𝑡 )(𝜃1, 𝜃2, 𝑎) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1, 0), if ⒧ 𝛿𝜌 ⒭
𝑎 𝑣(𝜃1)
𝑣(𝜃2) ≥

𝛼
1−𝛼

(𝛼, 𝛼), if 𝛼
1−𝛼 ≥ ⒧ 𝛿𝜌 ⒭

𝑎 𝑣(𝜃1)
𝑣(𝜃2) ≥

1−𝛼
𝛼

⒧𝛼𝑞10(𝜃1), 1 − (1 − 𝛼)𝑞10(𝜃1)⒭ , otherwise

(3)

Figure 6 offers an illustration of the optimal mechanism. Based on the proposition
above, the optimal dynamic mechanism can be conceptualized as a two-step process.
In the first step, the decision is whether to issue a license to the buyer who has already
arrived. The advantage of issuing a license immediately is that the buyer can be charged
a higher price right away, as they will start operating and generating profits without
delay. However, the cost of issuing the license to the current buyer is the lost option
value of having only the second buyer active when they arrive—due to irreversibility,
this option is no longer available. Once the second buyer arrives, even if their type is
significantly higher than that of the first buyer, it is no longer possible to revoke the
first buyer’s license, meaning that the principal can, at best, make the buyers share the
market by issuing two licenses.

The second step of the mechanism is contingent on the decision made in the first
step. If the decision was to wait, the principal then compares the types of buyers and
decides whether to allocate the license to buyer 1, to buyer 2, or to both. The cutoffs
for this decision are proportional to those from the static model but are adjusted by
a factor of (𝛿/𝜌)𝑎. The higher the value of 𝑎, the higher this fraction becomes, thereby
increasing the likelihood that the principal will either sell the license exclusively to the
first buyer or at least include him in the allocation. This is because the first buyermakes
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Figure 6: Optimal Dynamic Mechanism
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{2}

�̂�

Notes: The figures above shows the revenue-maximizing dynamic mechanism. The left panel shows the
�̂� threshold: agents with types below this threshold are asked to wait, while those above it are immedi-
ately issued a contract. In the latter scenario, once the second buyer arrives, depending on their type,
𝜃2, the principal may choose to allocate to the first agent exclusively or to both agents but no longer
exclusively to the second. For the case in which discount rates are not equal, the middle panel illustrates
how these cutoffs evolve for later arrival dates of the second agent, becoming more favorable towards
the first agent. The right panel presents the allocation regions for sufficiently delayed arrival dates of
the second agent. As can be seen, an exclusive contract region emerges.

their payment in period 0, while the second buyer if included, makes their payment
upon arrival. Given the difference in discounting between the principal and the buyers,
buyer 2’s payment is reweighted, and this reweighting becomes more significant the
later they arrive.⁹ Consequently, the seller finds it optimal to favor the initial buyer
more as the arrival time of the second buyer is delayed.¹⁰ As it turns out, even if the
initial decision is not to wait, the principal employs the same cutoffs in the second step,
with the key difference being the absence of an upper cutoff—there is no longer a range
of realized types where buyer 2 would receive an exclusive contract.

Finally, the proposition indicates that when 𝑎 is sufficiently large, an exclusivity

⁹To build some intuition, consider this simplified scenario: suppose it is known that the second buyer
arrives in period 𝑡 = 3. For every dollar benefit the first buyer expects to receive in that period, he is
willing to pay 𝛿3 immediately. In contrast, the buyer arriving in period 𝑡 = 3 cannot pay immediately;
their payment occurs only upon arrival. Consequently, each dollar of payment from this second buyer is
worth, for the seller, 𝜌3. Thus, in calculating the seller’s net present profit, 𝛿 discounts the initial buyer’s
payment, while 𝜌 applies to the second, resulting in the discrepancy.

¹⁰Note that if the seller is more patient than the buyer (𝜌 > 𝛿), it would be optimal to postpone any
payment as much as possible. With an infinite time horizon, the problem is no longer well-defined. If
we were to assume that a deadline exists, e.g. the game ends after 𝑇 periods, then all payments would be
postponed to this 𝑇 period. Because both buyers would make payments at that period, the seller would
not give preferential treatment to one of the buyers. Thus, the optimal cutoffs from the static mechanism
would be preserved.
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region emerges. In other words, the conditions eventually become so favorable for the
first buyer that even if the second buyer arrives and has the highest type 𝜃, the principal
still allocates the good exclusively to the first buyer. This exclusivity region emerges
in finite time for any type of first buyer for whom the principal decides to allocate the
license (𝑞10 = 1). However, this exclusivity region only materializes if 𝛿 > 𝜌, meaning
the seller must be less patient than the buyers, and even then, after a sufficiently long
period. If, instead, 𝛿 = 𝜌, the seller never finds it optimal to write a contract that
guarantees exclusivity to the current buyer.

The dynamic mechanism gives rise to two types of inefficiencies compared to the
first best. First, when both agents have arrived, the designer may either over-allocate
or under-allocate the license, similar to the static problem. Second, when buyer one
arrives, the decision to grant him a license may also be inefficient. Compared to the
first best, the designer might commit to allocating to buyer types that are too low or,
conversely, fail to allocate to buyer types that would be chosen under the first-best
outcome. We formally define these two inefficiencies below.

Definition 4. Let 𝑞𝑖𝑓,𝑡 represent the first-best allocations. We say that the allocation 𝑞𝑡 in-
duced by a mechanism under- (over-)provides if:

𝑞1𝑡 (𝜃, 𝑎) + 𝑞2𝑡 (𝜃, 𝑎) ≤ (≥)𝑞1𝑓,𝑡(𝜃, 𝑎) + 𝑞2𝑓,𝑡(𝜃, 𝑎) for all 𝜃 and 𝑡 ≥ 𝑎 .

We say that the allocation is stringent (lenient) if:

𝑞1𝑡 (𝜃1) ≤ (≥)𝑞1𝑓,𝑡(𝜃1) for all 𝜃1 and 𝑡 < 𝑎.

Proposition 6. Let 𝜆 be increasing (decreasing). Then, for all 𝛼, the allocation is stringent
(lenient) and always under- (over-) provides the good.

The proposition demonstrates that these inefficiencies are interconnected: the same
conditions that lead to under-provision also imply that the designer becomes more
stringent in granting licenses to the first buyer. We show the possible inefficiencies in
Figure 7. Once again, the distribution of buyers in a market entirely dictates whether
there will be under- or over-provision of the good, as well as whether the principal
will adopt a stringent or lenient approach when issuing initial contracts. Therefore,
a policymaker concerned about over- or under-provision or stringency or leniency in
a particular market can draw conclusions about potential inefficiencies simply by un-
derstanding the distribution of valuations—effectively by estimating demand.
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Figure 7: Dynamic Inefficiencies
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Notes: The left panel shows the stringent, underprovision case, which occurs when 𝜆 is increasing. The
right panel illustrates the lenient, overprovision case, occurring when 𝜆 is decreasing.

4 Model Generalizations

In this section, we generalize the optimal mechanism beyond the simple environment
considered so far. While our initial model suffices for certain applications, its limita-
tions are apparent. Notably, we assumed (1) that when transitioning from exclusive
control to sharing the market, the buyer’s profits were merely scaled by a constant fac-
tor, 𝛼 < 1; and (2) that a firm’s profits do not depend on the type of its competitor, even
when they share the market. In general, firms’ profits under competition may not sim-
ply be a scaled-down version of their monopoly profits. Furthermore, firms’ profits in
the presence of competition may depend not only on their own characteristics but also
on the characteristics of their competitor. Below, we provide a general model that re-
laxes both of these assumptions at the cost of additional restrictions on the preferences
and on the distribution of types. Throughout this section, we maintain the assumption
that there are two buyers 𝑁 = 2.

As in the previous sections, the payoff of buyer 𝑖 who receives the good alone is 𝜃𝑖,
drawn independently from a distribution 𝐹. Buyer i’s virtual valuation is then 𝑣(𝜃𝑖) =
𝜃𝑖 − 1−𝐹(𝜃𝑖)

𝑓(𝜃𝑖) , which is assumed to be strictly increasing. When both buyers are allocated
the good, the payoff of buyer 𝑖 is lower than hismonopoly payoff. Moreover, his duopoly
payoff increases with his own type and decreases with his competitor’s type. Formally,
When buyer 𝑖, with private information 𝜃𝑖 shares the good with another buyer, with
type 𝜃−𝑖, his payoff is given by 𝛼(𝜃𝑖, 𝜃−𝑖) < 𝜃𝑖. We assume 𝛼 is differentiable, strictly
increasing in the first entry—𝛼1 > 0 —and decreasing in the second entry—𝛼2 ≤ 0.
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We define an allocation as a triple (𝑞1, 𝑞2, 𝑞𝛼) such that 𝑞𝑖 is the probability that
buyer 𝑖 is allocated the good alone, and 𝑞𝛼 is the probability that both buyers receive
the good. Naturally, 𝑞1 + 𝑞2 + 𝑞𝛼 ≤ 1. The common feature of the static and dynamic
mechanisms we obtained in the previous sections is that the optimal allocations have a
specific structure: as a buyer’s type increases, the buyer receives more exclusivity. We
refer to such allocations as threshold allocations.

Definition 5. An allocation for agent 𝑖 is a threshold allocation if, for each type 𝜃−𝑖, there
exist thresholds, 𝜏 ≤ 𝜏 such that:

𝑞𝛼(𝜃𝑖, 𝜃−𝑖) = 1𝜏≤𝜃𝑖<𝜏, 𝑎𝑛𝑑 𝑞𝑖(𝜃𝑖, 𝜃−𝑖) = 1𝜃𝑖≥𝜏.

Below, we provide sufficient conditions for the allocation induced by an optimal
mechanism to be a threshold allocation. We define the duopoly virtual value of a bidder
with type 𝜃𝑖 to be:

𝑣𝛼(𝜃𝑖, 𝜃−𝑖) = 𝛼(𝜃𝑖, 𝜃−𝑖) − 𝛼1(𝜃𝑖, 𝜃−𝑖)
1 − 𝐹(𝜃𝑖)
𝑓(𝜃𝑖)

.

Assumption 1. Preferences and distributions satisfy the following:

1. Increasing differences. The difference between monopoly and duopoly payoffs is in-
creasing in own-type: 1 ≥ 𝛼1(𝜃𝑖, 𝜃−𝑖);

2. Strong Regulatiry. 𝑣𝛼(⋅, 𝜃−𝑖) is increasing for all 𝜃−𝑖 ∈ Θ

3. Virtual Gains. 𝑣′(𝜃𝑖) ≥ 𝑣𝛼,1(𝜃𝑖, 𝜃−𝑖) + 𝑣𝛼,2(𝜃−𝑖, 𝜃𝑖) ≥ 0

The first assumption establishes that monopoly payoffs grow faster with a buyer’s
type than his duopoly payoffs. The second assumption generalizes the usual regularity
of virtual values to settings with correlated values. It is in line with an assumption
found in Bulow and Klemperer (1996). Finally, the third condition specifies that, in
virtual space, as the valuation of a buyer increases, his monopoly virtual value grows
faster than the joint virtual value when both agents share the good. At the same time,
this duopoly joint virtual value also grows with an agent type. The next result shows
that these assumptions are sufficient to generalize our results.

Proposition7. UnderAssumption 1, the revenue-maximizingmechanism implements thresh-
old allocations given by:
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𝑞𝑖(𝜃𝑖, 𝜃−𝑖) =
⎧⎪⎪⎨⎪⎪⎩

1 if 𝑣(𝜃𝑖) > max {𝑣𝛼(𝜃𝑖, 𝜃−𝑖) + 𝑣𝛼(𝜃−𝑖, 𝜃𝑖), 𝑣(𝜃−𝑖)}

0 otherwise
,

and

𝑞𝛼(𝜃𝑖, 𝜃−𝑖) =
⎧⎪⎪⎨⎪⎪⎩

1 if max{𝑣(𝜃𝑖), 𝑣(𝜃−𝑖)} < 𝑣𝛼(𝜃𝑖, 𝜃−𝑖) + 𝑣𝛼(𝜃−𝑖, 𝜃𝑖)

0 otherwise.

Proposition 7 completes the characterization for the general model. In some envi-
ronments, the full generality of the model above may not be necesairy. For example,
it may be that the payoff of a buyer when sharing the good does not depend on his
competitor’s type, yet this payoff is not a fraction of his monopoly profits. In the ta-
ble below, we provide sufficient conditions for a mechanism analogous to the one in
Proposition 7 to be optimal, provided that the returns from exclusivity are increasing
in the buyer’s type—we call this the supermodular model. We also provide conditions
for the case in which duopoly prices are a scaled version of monopoly profits, but the
scale may depend on the competitor’s type—which we call the multiplicative model.
Table 1 below summarizes the sufficient conditions required for these alternative mod-
els, which follow from Proposition 7. In Section 5.2, we explore an application that is
feasible under this general framework but would have been unmanageable with the
baseline model.

5 Applications

5.1 Selling Information in Financial Markets

We consider the market for one risky security with payoff 𝑣 ∈ {0, 1}. Trade happens at
time 0, and the payoff of the asset is revealed at time 1. There are 𝑁 > 2 traders in the
market: 𝑁 − 2 being liquidity traders and 2 rational investors. Our trading protocol
is inspired by Glosten and Milgrom (1985). At time 0, perfectly competitive market
makers publicly post a price at which they stand ready to buy (bid, 𝑏) and sell (ask,
𝑎) the security. Subsequently, each trader interested in buying or selling is randomly
matched with a market maker, and they trade 1 unit of the security at the posted price.

The payoff of a trader with marginal utility of wealth 𝜃 who buys one unit of the
asset at the ask price is 𝜃(𝑣 −𝑎). If the same buyer were to sell the asset at the bid price,
the payoffwould be 𝜃(𝑏−𝑣). We assume that themarginal utility of wealth, 𝜃, is private
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Table 1: Sufficient Conditions

Win Alone Win Together Sufficient Conditions

𝛼 Model 𝜃𝑖 𝛼𝜃𝑖 ∅

A buyer’s profit depends on own type only.

Supermodular 𝜃𝑖 𝛼(𝜃𝑖)
max  −𝛼

′′(𝜃𝑖)
1−𝛼′(𝜃𝑖) ,

𝛼′′(𝜃𝑖)
𝛼′(𝜃𝑖) 

1−𝐹(𝜃𝑖)
𝑓(𝜃𝑖) ≤ 𝑣′(𝜃𝑖)

𝛼′(𝜃𝑖) ≤ 1

A buyer’s profit depends on both types.

Multiplicative 𝜃𝑖 𝛼(𝜃𝑗)𝜃𝑖
𝑣′(𝜃𝑖)
𝑣(𝜃𝑖) ≥ −𝛼′(𝜃𝑖)

𝛼(𝜃𝑖)

1
2 ≤ 𝛼(𝜃𝑖) ≤ 1

General 𝜃𝑖 𝛼(𝜃𝑖, 𝜃𝑗)
𝑣′(𝜃𝑖) ≥ 𝑣𝛼,1(𝜃𝑖, 𝜃𝑗) + 𝑣𝛼,2(𝜃𝑗 , 𝜃𝑖) ≥ 0

𝛼1(𝜃𝑖, 𝜃𝑗) ≤ 1
Notes: The table reports the additional assumptions ensuring that the optimal mechanism allocates
to the group of buyers with maximal joint virtual values. The optimal mechanism also implements
threshold allocations. These assumptions are in addition to increasing virtual values: 𝑣′(𝜃𝑖) > 0.

information and symmetrically distributed according to a continuous distribution 𝐹.
Rational investors trade to maximize their expected payoff. Liquidity traders trade
randomly: for simplicity, we assume that liquidity traders are always willing to trade
and buy or sell with the same probability.

At time 0, all traders and market makers share a common prior assigning equal
probability to 𝑣 ∈ {0, 1}. Before prices are posted, an information seller (the principal)
who is fully informed about the value of the security can sell that information to one or
both of the rational traders. If only one of the rational investors is informed, it will be
optimal for the uninformed rational investor to not trade, so the proportion of informed
investors on the pool of traders is 𝜂 = 1

𝑁−1 . If both rational investors are informed, then
all traders are active in the market and the proportion of informed investors is 𝜂 = 2

𝑁 .
We solve for the equilibrium in the financial market given 𝜂.

Market makers are competitive, but they are aware of adverse selection, which will
give rise to a bid-ask spread in equilibrium. For example, upon observing a buying
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demand, a market maker knows that there is a probability that they are observing an
informed trader, which implies that the asset value is 1. To protect themselves against
that possibility, they raise their ask price. In equilibrium we must have:

𝑎 = 𝔼[𝑣|buy] = 1 + 𝜂
2 𝑏 = 𝔼[𝑣|sell] = 1 − 𝜂

2

Thus, if there is only one informed investor, her payoff is

𝜋𝑀(𝜃) = 1
2
𝑁 − 2
𝑁 − 1𝜃 ∝ 𝜃.

On the other hand, if there are two informed investors, their payoffs will be

𝜋𝐷(𝜃) = 𝑁 − 1
𝑁 𝜋𝑀(𝜃).

If we renormalize investor types to be �̃� = 1
2
𝑁−2
𝑁−1𝜃, the above payoffs fit into our base-

line model, with 𝛼 = 𝑁−1
𝑁 . The revenue-maximizing allocation of information follows

Proposition 1.

5.2 Horizontally Differentiated Products

Consider a uniform distribution of consumers on the interval [0, 1]. Two potential fran-
chisees are positioned at the ends. A franchisor, henceforth referred to as the principal,
contemplates licensing a franchise to the franchisees, henceforth referred to as firms.
The principal can issue an exclusive license to the firm located at 0, an exclusive license
to the firm located at 1, or issue licenses to both of them. Each firm has private infor-
mation about the quality of the products they will be able to offer. Let these qualities
be uniformly distributed 𝑞𝑗 ∼ 𝑈[𝑞, 𝑞], with 𝑗 ∈ {0, 1}, where 𝑗 indicates their position in
the interval. If a customer decides to purchase a good from firm 𝑗, their utility will be
𝑞𝑗 −𝑝𝑗 −𝛿𝑥, where 𝑝𝑗 represents the price the firm charges, 𝛿 represents the travel costs,
while 𝑥 represents the consumer’s position in the unit interval.
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Figure 8: Hotelling Application
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Notes: The left panel shows the casewhere an exclusive franchise license is granted to the firm at position
0, along with the corresponding marginal consumer. The right panel displays the case where franchise
licenses are issued to both sellers, along with the associated marginal consumer.

If the principal decides to license a franchise to only one firm, say 𝑗 = 0, then this
firm will be a monopolist. To find the profit-maximizing price, we first need to find the
marginal consumer who is indifferent between traveling and purchasing the good or
staying home and receiving 0 utility. This will be the consumer positioned at ̃𝑥, where
̃𝑥 = {𝑥|𝑞𝑗 − 𝑝𝑗𝛿𝑥 = 0}. The firm then maximizes max𝑝𝑗 𝑝𝑗 ̃𝑥(𝑝𝑗), and finds it optimal to

charge 𝑝𝑀
𝑗 = 𝑞𝑗

2 , with𝑀 representing theirmonopolistic status. Themarginal consumer

will thus be ̃𝑥(𝑝𝑀
𝑗 ) = 𝑞𝑗

2𝛿 , while the firms profits will be 𝜋𝑀
𝑗 = 𝑞2𝑗

4𝛿 .
If the principal opts to grant franchises to both firms, then consumers compare the

quality, price, and distance from each firm before deciding which one to buy from.
To the buyers, this is the externality caused by providing two franchises. Although
a franchise can be replicated at no cost, it intensifies competition, which may reduce
profits by driving down the prices, leading to lower bids and potentially decreased
profitability. With two active firms, the marginal client, the client indifferent from
purchasing from 𝑗 = 0 or 𝑗 = 1, is

̃𝑥 = 𝑥𝑞0 − 𝑝0 − 𝛿𝑥 = 𝑞1 − 𝑝1 − 𝛿(1 − 𝑥) → ̃𝑥 = (𝑞0 − 𝑝0) − (𝑞1 − 𝑝1) + 𝛿
2𝛿 ,

Each firm then maximizes max𝑝𝑗 𝑝𝑗 ̃𝑥(𝑝𝑗 , 𝑝−𝑗), leading to the following optimal prices

𝑝𝐷
0 = 𝑞0 − 𝑞1 + 3𝛿

3 , 𝑝𝐷
1 = 𝑞1 − 𝑞2 + 3𝛿

3 .

And duopoly profits of
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𝜋𝐷
0 = (𝑞0 − 𝑞1 + 3𝛿)2

18𝛿 , 𝜋𝐷
1 = (𝑞1 − 𝑞0 + 3𝛿)2

18𝛿 .

Importantly, note that the duopoly profits are not simply a fraction𝛼 of themonopoly
profits, nor can they be expressed in a multiplicative form as a function of the competi-
tors type 𝑞−𝑗 . Thus, the machinery developed in Section 4 is necessary to handle this
example. It is straightforward to verify that, with the appropriate 𝑞, 𝑞, and 𝛿 param-
eters, all sufficient conditions specified in Section 4 are met. Thus, the principal can
maximize expected profits by simply running an interval auction.

6 Conclusions

This paper examines the optimal licensing strategy for a seller dealing with down-
stream competitors who hold private information, applicable in numerousmarket con-
texts such as franchise operations, patent licensing, and information sales, to name a
few. We characterize conditions under which inefficiencies—absent in conventional
auctions—arise due to asymmetric information, leading the seller to either over- or
under-supply the good. We link these inefficiencies to the distribution of buyer valua-
tions, emphasizing that a policymaker only needs to estimate demand to assesswhether
over- or under-provisionmay occur. We propose an interval auction as a dominant strat-
egy implementation of the revenue-maximizing mechanism, where the allocation de-
cision depends not only on the highest bid but on the overall bid distribution. When
bids are closely clustered, the mechanism favors selling to multiple bidders; when bids
are widely dispersed, exclusive licensing to the highest bidder is optimal.

In a dynamic setting where buyers arrive sequentially, we analyze the timing of
licensing decisions, demonstrating that a seller may choose to delay licensing or issue
it immediately to an available buyer. We show that the decision to offer a promise of
exclusivity depends on the seller’s relative patience compared to the buyers; a promise
of exclusivity is issued only if the seller is less patient and enough time has passed since
the arrival of the first buyer. We also uncover additional inefficiencies in the dynamic
setup related to the seller’s inclination to license to the first arriving buyer. We once
again link these inefficiencies to the same conditions identified in the static model.

Lastly, we explore sufficient conditions that allow for more general profit functions
and a framework where buyer valuations are interdependent.
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7 Appendix

7.1 Proofs

Proof of Proposition 1

The problem of the principal is:

max
𝑞𝑖


𝑖

𝑣(𝜃𝑖)𝑞𝑖(𝜃)𝑓(𝜃)𝑑𝜃

s.t. 1 and 4.

We follow the standard approach to solve a relaxed problem by ignoring condition
1 (monotonicity), so we maximize the seller’s problem conditional to feasibility alone.
We then check that the solution to the relaxed problem does satisfy monotonicity. We
first transform the problem back to allocation space:

max
𝜎∈Δ𝒥


ℓ

𝜎ℓ
⎛⎜⎜⎜⎜⎝

𝑖

𝑣(𝜃𝑖)𝛼|ℓ|1𝑖∈𝒥ℓ

⎞⎟⎟⎟⎟⎠
𝜎ℓ

For each 𝜃, the choice of the distribution 𝜎ℓ must satisfy:

supp𝜎 ∈ argmax
ℓ


𝑖

𝑣(𝜃𝑖)𝛼|ℓ|1𝑖∈𝒥ℓ .

Because 𝑣 is monotonic, by ordering the types we obtain the result in the propo-
sition. Moreover, monotonicity is guaranteed because as 𝜃𝑖 grows, they can only be
included in more exclusive groups, since 𝛼|ℓ| > 𝛼|ℓ ′| for |ℓ| < |ℓ ′|. ■

Proof of Proposition 2

Assume 𝜆(𝑥) increasing. We want to prove that the revenue-maximizing mechanism
does not over-provide the good. To see that, fix an arbitrary realization of types and
assume, without loss of generality, 𝜃1 ≥ 𝜃2 ≥ ... ≥ 𝜃𝑁 . For that realization, let the
first-best number of buyers served be 𝑘𝑓(𝜃) = 𝑘. Then, for every 𝑘′ > 𝑘 we have:
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𝛼𝑘

𝑘


𝑖=1

𝜃𝑖 ≥ 𝛼𝑘′
𝑘′


𝑖=1

𝜃𝑖,

which can be reordered to obtain:

𝛼𝑘′

𝛼𝑘 − 𝛼𝑘′
≤

𝑘


𝑖=1

𝜃𝑖
∑𝑘′

𝑗=𝑘+1 𝜃𝑗
.

Thus:

𝛼𝑘′

𝛼𝑘 − 𝛼𝑘′
≤

𝑘


𝑖=1

𝜃𝑖
∑𝑘′

𝑗=𝑘+1 𝜃𝑗
≤

𝑘


𝑖=1

⒧1 − 1
𝜆(𝜃𝑖)⒭

⒧1 − 1
𝜆(𝜃𝑘)⒭

𝜃𝑖
∑𝑘′

𝑗=𝑘+1 𝜃𝑗

≤
𝑘


𝑖=1

⒧1 − 1
𝜆(𝜃𝑖)⒭ 𝜃𝑖

∑𝑘′
𝑗=𝑘+1 ⒧1 − 1

𝜆(𝜃𝑗 )⒭ 𝜃𝑗
=

𝑘


𝑖=1

𝑣(𝜃𝑖)
∑𝑘′

𝑗=𝑘+1 𝑣(𝜃𝑗)
,

where the first ineequality follows from optimality of 𝑘 (over 𝑘′). The second and
third inequalities follow from the fact that 1 − 1

𝜆(𝜃𝑖) ≥ 1 − 1
𝜆(𝜃𝑗 ) for all 𝑗 ≥ 𝑖 because 𝜆 is

increasing. By rewriting the implied inequality:

𝛼𝑘

𝑘


𝑖=1

𝑣(𝜃𝑖) ≥ 𝛼𝑘′
𝑘′


𝑖=1

𝑣(𝜃𝑖),

so, under asymmetric information, the designer prefers to allocate to 𝑘 over any
larger number 𝑘′ of buyers. Thus, the number of allocated buyers is at-most efficient.

For the converse, assume that the optimalmechanism underprovides for all 𝛼. Con-
sider 𝛼1 = 1, 𝛼2 = 𝛼 and 𝛼3 = ... = 𝛼𝑁 = 0, so at most two agents are served. Let 𝜃1 > 𝜃2
be the (arbitrary) highest valuations. Choose 𝛼 such that:

𝛼
1 − 𝛼 = 𝜃1

𝜃2
≤

1 − 1
𝜆(𝜃1)

1 − 1
𝜆(𝜃2)

𝜃1
𝜃2

,

where the inequality follows from the assumption that the optimal mechanism un-
derprovides for all 𝛼. We thus have 𝜆(𝜃1) ≥ 𝜆(𝜃2). Because 𝜃1 > 𝜃2 were arbitrary, the
result follows. A symmetric argument works for 𝜆 decreasing.

By definition, the optimal mechanism is efficient if and only if it over- and under-
provides, so 𝜆 is a constant. That is, for all 𝑥:
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𝜆(𝑥) = 𝑓(𝑥)
1 − 𝐹(𝑥) = 𝜆,

for some real 𝜆. Solving this differential equation generates the unique solution:

𝐹(𝑥) = 1 + 𝑐𝜃−𝜆,

which is a member of the Pareto family. ■

Proof of Proposition 3

Interval Structure We first prove the following: for any bidder 𝑖, and for a fixed re-
alization of other bidders, there exists an interval structure 𝜏1 < 𝜏2 < ... < 𝜏𝑛, with
associated natural numbers 𝑚1 = 𝑁 + 1 > 𝑚2 > ... > 𝑚𝑛, such that if 𝜃𝑖 ∈ [𝜏ℓ , 𝜏ℓ+1),
ℓ > 1, bidder 𝑖 is allocated the good in a groupwith𝑚ℓ other buyers. If 𝜃𝑖 ∈ [𝜏1, 𝜏2), then
bidder 𝑖 is excluded. We assume without loss of generality that buyer 𝑖 is indexed as𝑁,
and that the other bidders’ types are ordered in decreasing order: 𝜃1 > 𝜃2 > ... > 𝜃𝑁−1.

For that, notice that for any group containing 𝑘 individuals including buyer 𝑁, the
seller’s revenue for that group, is a linear function of 𝑣𝑛 ≡ 𝑣(𝜃𝑁). Formally:

𝑔𝑘(𝑣𝑁) = 𝛼𝑘

𝑘−1


𝑗=1

𝑣(𝜃𝑗) + 𝛼𝑘𝑣𝑁 .

If the group contains 𝑘 individuals but excludes buyer𝑁, then the revenue does not
depend on 𝑣𝑁 :

𝑔−𝑘(𝑣𝑁) = 𝛼𝑘

𝑘


𝑗=1

𝑣(𝜃𝑗).

Because each 𝑔−𝑘 does not depend on 𝜃𝑁 , we can define 𝑔𝑁+1 ≡ max𝑘 𝑔−𝑘(𝑣𝑁) as the
maximal revenue obtained by selling to a group without agent 𝑁.

The revenue of the seller as a function of 𝑣𝑁 can be calculated as:

𝑔(𝑣𝑁) = max
𝑘∈{1,...,𝑁+1}

{𝑔𝑘(𝑣𝑁), 𝑔−𝑘(𝑣𝑁)}.

As a maximum of finite linear functions, 𝑔 is linear by parts, convex with finite non-
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differentiable points. Order the points of non-differentiability of 𝑔 : �̂�1 < �̂�2 < ... < �̂�𝑛.
For any point �̂�𝑖 such that 𝑔 is non-differentiable, define 𝑚𝑖 = min{𝑘 ∶ 𝑔(�̂�𝑖) = 𝑔𝑘(�̂�𝑖)}.
We argue that 𝑚𝑖 > 𝑚𝑖+1 for any 𝑖. Indeed, notice that 𝑔 is convex, so the slope of
𝑔 at �̂�𝑖 is lower than the slope of 𝑔 at �̂�𝑖+1. Because 𝑔(�̂�𝑖) = 𝑔𝑚𝑖 (�̂�𝑖) has slope 𝛼𝑚𝑖 , and
𝑔(�̂�𝑖+1) = 𝑔𝑚𝑖+1(�̂�𝑖+1) has slope 𝛼𝑚𝑖+1 , we conclude 𝛼𝑚𝑖+1 > 𝛼𝑚𝑖—with the interpretation
that 𝛼𝑁+1 = 0. This implies 𝑚𝑖+1 < 𝑚𝑖.

Thus, if 𝑣𝑁 ∈ [�̂�𝑖, �̂�𝑖+1), the seller maximizes revenue by choosing a group of size 𝑚𝑖

that includes buyer 𝑁, if 𝑚𝑖 < 𝑁 + 1, or excludes the buyer 𝑁 if 𝑚𝑖 = 𝑁 + 1. Because 𝑣
is monotonic, we can define 𝜏𝑖 = 𝑣−1(�̂�𝑖) without changing the optimality of the seller’s
choice. Moreover, 𝑚1 > 𝑚2 > ... > 𝑚𝑛.

Implementation For any possible realization of the other N+1 agents’ types, the pro-
cedure above provides us with a set of thresholds for agent 𝑖, 𝜏1 < 𝜏2 < ... < 𝜏𝑛, with
associated group sizes𝑚1 = 𝑁+1 > 𝑚2 > ... > 𝑚𝑛. For all bids 𝑏𝑖 such that 𝜏𝑘 < 𝑏𝑖 ≤ 𝜏𝑘+1
define:

𝑟𝑘 =
𝑘


𝑗=2

⒧𝛼𝑚𝑗 − 𝛼𝑚𝑗−1⒭ 𝜏𝑗 .

Let’s show that the buyer has no incentive to deviate. Consider first a buyer with
𝜃 ∈ [𝜏ℓ , 𝜏ℓ+1] who considers deviating to a group of size 𝑚𝑘 > 𝑚ℓ (that is, 𝑘 < ℓ)—
notice that the deviation for 𝑚𝑘 = 𝑚1 = 𝑁 + 1 already includes the case of deviating
to exclusion. Then the difference between the payoff of truthful revelation and of the
deviation is:

𝛼𝑚ℓ𝜃 −
ℓ


𝑗=2

(𝛼𝑚𝑗 − 𝛼𝑚𝑗−1)𝜏𝑗 −
⎛⎜⎜⎜⎜⎜⎝
𝛼𝑚𝑘𝜃 −

𝑘


𝑗=2

(𝛼𝑚𝑗 − 𝛼𝑚𝑗−1)𝜏𝑗
⎞⎟⎟⎟⎟⎟⎠
= ⒧𝛼𝑚ℓ − 𝛼𝑚𝑘⒭ 𝜃 −

ℓ


𝑗=𝑘+1

(𝛼𝑚𝑗 − 𝛼𝑚𝑗−1)𝜏𝑗

≥ ⒧𝛼𝑚ℓ − 𝛼𝑚𝑘⒭ 𝜏ℓ −
ℓ


𝑗=𝑘+1

(𝛼𝑚𝑗 − 𝛼𝑚𝑗−1)𝜏ℓ = 0,

where the inequality follows from 𝜃 ∈ [𝜏ℓ , 𝜏ℓ+1], 𝛼𝑚ℓ > 𝛼𝑚𝑘 , and monotonicity of the
thresholds, and the last equality follows from the telescopic summation. Thus, no such
deviation would benefit the agent. Consider now 𝑚𝑘 < 𝑚ℓ—that is, 𝑘 > ℓ . Then:
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𝛼𝑚ℓ𝜃 −
ℓ


𝑗=2

(𝛼𝑚𝑗 − 𝛼𝑚𝑗−1)𝜏𝑗 −
⎛⎜⎜⎜⎜⎜⎝
𝛼𝑚𝑘𝜃 −

𝑘


𝑗=2

(𝛼𝑚𝑗 − 𝛼𝑚𝑗−1)𝜏𝑗
⎞⎟⎟⎟⎟⎟⎠
= ⒧𝛼𝑚ℓ − 𝛼𝑚𝑘⒭ 𝜃 +

𝑘


𝑗=ℓ+1

(𝛼𝑚𝑗 − 𝛼𝑚𝑗−1)𝜏𝑗

≥ ⒧𝛼𝑚ℓ − 𝛼𝑚𝑘⒭ 𝜏ℓ+1 −
ℓ


𝑗=𝑘+1

(𝛼𝑚𝑗 − 𝛼𝑚𝑗−1)𝜏ℓ+1 = 0,

confirming that the agent has no incentive to deviate. Because this payment scheme
implements the optimal allocation and the agent with the lowest type receives zero
rents, revenue-equivalence implies that this scheme implements the optimal mecha-
nism.

The last step is to notice that we can relabel the thresholds to reflect the number of
agents in their groups to obtain, for a certain subset of 𝒩, 𝜏𝑛1 < 𝜏𝑛2 < ..., with 𝑛𝑗−1 > 𝑛𝑗 .
Finally, if there is a natural number 𝑛𝑗−1 > 𝑛 > 𝑛𝑗 , we define 𝜏𝑛 = 𝜏𝑛𝑗−1 . ■

Proof of Proposition 5

Define 𝑥1 and 𝑥2 as follows

𝑈1(𝜃1) = 𝔼𝜃2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞


𝑗=0

𝛿𝑗(1 − 𝜇)𝑗𝑞1𝑗 (𝜃1) +
∞


𝑗=0

𝜇(1 − 𝜇)𝑗
∞


𝑘=𝑗+1

𝛿𝑘𝑞1𝑘 (𝜃1, 𝜃2, 𝑎2 = 𝑗 + 1)


𝑥1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝜃1 − 𝑟1(𝜃1),

𝑈2(𝜃1, 𝜃2, 𝑎2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞


𝑗=0

𝛿𝑗𝑞2𝑎2+𝑗(𝜃1, 𝜃2, 𝑎2)


𝑥2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝜃2 − 𝑟2(𝜃1, 𝜃2).

The revenue of the seller is:

𝔼[𝑟1(𝜃1, 𝜃2) +
∞


𝑗=0

𝜌𝑗+1𝜇(1 − 𝜇)𝑗𝑟2(𝜃1, 𝜃2, 𝑎2 = 𝑗 + 1)]

Using integration by parts, the seller maximizes:
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𝔼
⎡⎢⎢⎢⎢⎣
𝑣(𝜃1)𝑥1(𝜃1, 𝜃2) + 𝜌

∞


𝑖=0

𝜌𝑖𝜇(1 − 𝜇)𝑖𝑣(𝜃2)𝑥2(𝜃1, 𝜃2, 𝑎2 = 𝑖 + 1)
⎤⎥⎥⎥⎥⎦

= 𝔼
∞


𝑗=0

𝛿𝑗(1 − 𝜇)𝑗𝑞1𝑗 (𝜃𝑖)𝑣(𝜃1) +
∞


𝑗=0

𝜇(1 − 𝜇)𝑗 
𝑘=𝑗+1

𝛿𝑘𝑞1𝑘 (𝜃𝑖, 𝑎2 = 𝑗 + 1)𝑣(𝜃1)+

∞


𝑗=0

𝜌𝑗+1𝜇(1 − 𝜇)𝑗
∞


𝑘=𝑗+1

𝛿𝑘

𝛿𝑗+1𝑞
2
𝑘 (𝜃, 𝑎2 = 𝑗 + 1)𝑣(𝜃2)

So if we fix any 𝑗, 𝑎2 = 𝑗 + 1 and any time 𝑘 > 𝑗 + 1 we have that the seller solves,
given an irreversibility constraint 𝑞:

max
𝑞1≥𝛼𝑞

𝜇(1 − 𝜇)𝑗𝛿𝑘 ⒧𝑞1𝑘 (𝜃, 𝑎2 = 𝑗 + 1)𝑣(𝜃1) +
𝜌𝑗+1

𝛿𝑗+1 𝑞
2
𝑘 (𝜃, 𝑎2 = 𝑗 + 1)𝑣(𝜃2)⒭ .

When the irreversibility constraint does not bind, we have:

𝑞1𝑡 (𝜃1, 𝜃2, 𝑎2) = 1 ⟺ 𝑣(𝜃1)
𝑣(𝜃2)

≥ ⒧𝜌𝛿 ⒭
𝑎2 𝛼

1 − 𝛼,

𝑞1𝑡 (𝜃1, 𝜃2, 𝑎2) = 𝛼 ⟺ ⒧𝜌𝛿⒭
𝑎2 1 − 𝛼

𝛼 ≤ 𝑣(𝜃1)
𝑣(𝜃2)

≤ ⒧𝜌𝛿 ⒭
𝑎2 𝛼

1 − 𝛼,

and when it binds:

𝑞1𝑡 (𝜃1, 𝜃2, 𝑎2) = 𝛼𝑞 ⟺ ⒧𝜌𝛿⒭
𝑎2 1 − 𝛼

𝛼 ≥ 𝑣(𝜃1)
𝑣(𝜃2)

.

It is clear that, because of discounting, the seller has incentives to frontload the solo
allocation of the good for agent 1, 𝑞1(𝜃) before the arrival of agent 2. By irreversibility,
that allocation cannot decrease until agent 2 arrives, so it is without loss of generality
to consider an 𝑞1𝑡 (𝜃) = 𝑞. The profit of the seller is then:

1
1 − 𝛿(1 − 𝜇)𝑞𝑣(𝜃1) +

∞


𝑗=0

𝜇
1 − 𝛿(1 − 𝜇)𝑗

𝔼𝜃2 max 𝛿𝑗+1𝑣(𝜃1), 𝛼 ⒧𝛿𝑗+1𝑣(𝜃1) + 𝜌𝑗+1𝑣(𝜃2)⒭ , 𝑞𝛼 ⒧𝛿𝑗+1𝑣(𝜃1) + 𝜌𝑗+1𝑣(𝜃2)⒭ + (1 − 𝑞)𝜌𝑗+1𝑣(𝜃2)

This function is affine in q. To see that, fix any 𝜃2. Note that the third term in the
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max is themaximumof the three for 𝑞 = 0 if and only if it is also themaximum for 𝑞 = 1.
In other words, for a fixed 𝜃2, either the max does not change with 𝑞, in which case the
expression above is affine in 𝑞; or the max changes linearly in 𝑞, so the expression above
is again affine in q. Thus, once one takes expectation in 𝜃2, the expression above is still
affine in 𝑞. Therefore, 𝑞 ∈ {0, 1}.

Having established the possible values of 𝑞, we next show that 𝑞𝑤(𝜃1) is monotoni-
cally decreasing. It is optimal to choose 𝑞 = 0 instead of 𝑞 = 1 if

∞


𝑗=0

𝜇
1 − 𝛿(1 − 𝜇)𝑗 𝔼𝜃2 max 𝛿𝑗+1𝑣(𝜃1), 𝛼 ⒧𝛿𝑗+1𝑣(𝜃1) + 𝜌𝑗+1𝑣(𝜃2)⒭ , 𝜌𝑗+1𝑣(𝜃2)

−max 𝛿𝑗+1𝑣(𝜃1), 𝛼 ⒧𝛿𝑗+1𝑣(𝜃1) + 𝜌𝑗+1𝑣(𝜃2)⒭

− 1
1 − 𝛿(1 − 𝜇)𝑣(𝜃1) ≥ 0

At 𝜃1 = 𝜃, the difference within the expectation operator is 0, implying that the
whole term is negative. Since the inequality does not hold the optimal decision is 𝑞 = 1.
At 𝜃1 = 𝜃, the inequality cannot be generally signed. Notice that if 𝑣(𝜃) ≤ 0, then we
obtain that it is always optimal to wait for 𝜃1 = 𝜃. Thus, for high enough 𝜃1 the optimal
𝑞 surely becomes 1, but might be 0 or 1 for low values of 𝜃1. Fix a 𝜃2 value, and note that
the difference between the max expressions weakly decreases as 𝜃1 increases, while the
𝑣(𝜃1) term outside also decreases, leading to a decrease of the total expression. Since
this holds for any 𝜃2 value, it also holds in expectation. Thus, 𝑞 is either 1 to begin with,
or goes from 0 to 1 as 𝜃1 increases. ■

Proof of Proposition 6

Start by noticing that, in the optimal mechanism, for a fixed 𝜃1, the designer waits if
and only if:

1 − 𝛿(1 − 𝜇)
1 − 𝛿 𝔼𝑎,𝜃2 max𝛿𝑎, 𝛼 ⒧𝛿𝑎 + 𝜌𝑎 𝑣(𝜃2)

𝑣(𝜃1)
⒭ , 𝜌𝑎 𝑣(𝜃2)

𝑣(𝜃1)


−max𝛿𝑎, 𝛼 ⒧𝛿𝑎 + 𝜌𝑎 𝑣(𝜃2)
𝑣(𝜃1)

⒭

≥ 1,
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whereas in the first best, the designer waits if and only if:

1 − 𝛿(1 − 𝜇)
1 − 𝛿 𝔼𝑎,𝜃2 max 𝛿𝑎, 𝛼 ⒧𝛿𝑎 + 𝜌𝑎𝜃2

𝜃1
⒭ , 𝜌𝑎𝜃2

𝜃1


−max 𝛿𝑎, 𝛼 ⒧𝛿𝑎 + 𝜌𝑎𝜃2
𝜃1

⒭

≥ 1.

Notice first that the expression inside the expectation on the left-hand side of the
inequalities above is different from zero only if 𝜃2 > 𝜃1. We focus on that case from now
on. Consider the function 𝐻(𝜙) = max 𝛿𝑎, 𝛼 (𝛿𝑎 + 𝜌𝑎𝜙) , 𝜌𝑎𝜙 − max 𝛿𝑎, 𝛼 (𝛿𝑎 + 𝜌𝑎𝜙) .
This function is increasing in 𝜙.

If 𝑣(𝜃2)
𝑣(𝜃1) ≥

𝜃2
𝜃1 for 𝜃2 > 𝜃1, then, conditional on 𝜃1, the distribution over (𝑣(𝜃2)𝑣(𝜃1) , 𝑎) first-

order stochastically dominate the distribution over (𝜃2𝜃1 , 𝑎). Hence, for all 𝜃1’s such that
the designer chooses to wait in the first-best, she also chooses to wait in the second-best.
Notice that this is the same condition as underprovision for all 𝛼 values (namely, 𝜆 is
decreasing). ■

Proof of Proposition 7

Define 𝛾(𝜃𝑖, 𝜃−𝑖) = (1, 𝛼(𝜃𝑖, 𝜃−𝑖)). Recall that an allocation is a triple of functions {𝑞𝑖}𝑖=1,2,
𝑞𝛼 ∶ Θ × Θ → [0, 1], such that for each realization 𝜃1, 𝜃2 ∈ Θ:

𝑞1(𝜃1, 𝜃2) + 𝑞2(𝜃1, 𝜃2) + 𝑞𝛼(𝜃1, 𝜃2) ≤ 1. (F)

Define 𝑞𝑖 = (𝑞𝑖, 𝑞𝛼). In a truthfully revealing direct mechanism, the expected utility of
agent 𝑖 with type 𝜃𝑖 is

𝑈𝑖(𝜃𝑖) = 𝔼 [𝛾 (𝜃𝑖, 𝜃−𝑖) ⋅ 𝑞𝑖 (𝜃𝑖, 𝜃−𝑖) − 𝑡 (𝜃𝑖, 𝜃−𝑖)] .

Following the usual approach for quasilinear mechanism design, we can then write
the Bayesian incentive compatibility constraints as

𝑈𝑖(𝜃𝑖) − 𝑈𝑖(𝜃′
𝑖 ) ≥ 𝔼 ⒧𝛾(𝜃𝑖, 𝜃−𝑖) − 𝛾(𝜃′

𝑖 , 𝜃−𝑖)⒭ ⋅ 𝑞𝑖(𝜃′
𝑖 , 𝜃−𝑖) ,

for all 𝜃𝑖, 𝜃′
𝑖 . As usual, we say that an allocation is implementable if it satisfies Bayesian

Incentive Constraints. The following lemma establishes necessary conditions for im-
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plementability.

Lemma 3. An allocation {𝑞1, 𝑞2, 𝑞𝛼} is implementable only if:

(E) 𝑈𝑖(𝜃𝑖) = 𝑈𝑖(𝜃) + ∫
𝜃
𝜃 𝔼[𝜕𝛾𝜕𝜈 (𝜈, 𝜃−𝑖) ⋅ 𝑞𝑖(𝜈, 𝜃−𝑖)]𝑑𝜈 for all 𝜃𝑖 ∈ Θ.

Proof of Lemma 3

This proof closely follows Lemma 3 in Bulow and Klemperer (1996). By switching the
order of 𝜃𝑖 and 𝜃′

𝑖 in the BIC inequality above and putting the two together we obtain:

𝔼 ⒧𝛾(𝜃𝑖, 𝜃−𝑖) − 𝛾(𝜃′
𝑖 , 𝜃−𝑖)⒭ ⋅ 𝑞𝑖(𝜃′

𝑖 , 𝜃−𝑖) ≤ 𝑈𝑖(𝜃) − 𝑈𝑖(𝜃′) ≤ 𝔼 ⒧𝛾(𝜃𝑖, 𝜃−𝑖) − 𝛾(𝜃′
𝑖 , 𝜃−𝑖)⒭ ⋅ 𝑞𝑖(𝜃𝑖, 𝜃−𝑖)

Divide all three terms by 𝜃 −𝜃′ and take the limit as 𝜃′ → 𝜃 to obtain condition (E).
■

The lemma shows that (E) is a necessary condition for implementability. We show
now that, given the Increasing differences assumption, monotonicity of 𝑞𝑖 and 𝑞𝑖 + 𝑞𝛼
in 𝜃𝑖 makes condition (E) sufficient for implementability.

Lemma 4. When 𝑞𝑖 and 𝑞𝑖 + 𝑞𝛼 are increasing, condition (E) in Lemma 3 is sufficient for
implementability.

Proof of Lemma 4

We assume 𝑞𝑖 and 𝑞𝑖 + 𝑞𝛼 are increasing and prove that IC is satisfied. Start by writing
𝛾 = (𝛽 − 𝛼, 𝛼), and 𝑞𝑖 = 𝑞𝑖, 𝑞𝑖 + 𝑞𝛼. Assume first 𝜃𝑖 > 𝜃′

𝑖 . Then:

𝑈(𝜃𝑖) − 𝑈(𝜃′
𝑖 ) = 

𝜃𝑖

𝜃′
𝑖

𝔼𝜕𝛾𝜕𝜈 (𝜈, 𝜃−𝑖) ⋅ 𝑞𝑖(𝜈, 𝜃−𝑖) 𝑑𝜈

= 𝔼
⎡⎢⎢⎢⎣


𝜃𝑖

𝜃′
𝑖

𝜕𝛾
𝜕𝜈 (𝜈, 𝜃−𝑖) ⋅ 𝑞𝑖(𝜈, 𝜃−𝑖)𝑑𝜈

⎤⎥⎥⎥⎦
= 𝔼

⎡⎢⎢⎢⎣


𝜃𝑖

𝜃′
𝑖

𝜕𝛾
𝜕𝜈 (𝜈, 𝜃−𝑖) ⋅ 𝑞𝑖(𝜈, 𝜃−𝑖)𝑑𝜈

⎤⎥⎥⎥⎦

≥ 𝔼
⎡⎢⎢⎢⎣


𝜃𝑖

𝜃′
𝑖

𝜕𝛾
𝜕𝜈 (𝜈, 𝜃−𝑖)𝑑𝜈 ⋅ 𝑞𝑖(𝜃

′, 𝜃−𝑖)
⎤⎥⎥⎥⎦

= 𝔼 ⒧𝛾(𝜃𝑖, 𝜃−𝑖) − 𝛾(𝜃′
𝑖 , 𝜃−𝑖)⒭ ⋅ 𝑞𝑖(𝜃′

𝑖 , 𝜃−𝑖) ,

where the first equality comes from condition (E), the second equality switches the
order of integration, the third equality rewrites the integrand using the definitions of
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𝛾 and 𝑞, and the inequality uses the fact that, by the increasing differences assumption,
both entries of 𝛾′ are positive and both entries of 𝑞𝑖 are monotonic. The symmetric
argument holds for 𝜃′ > 𝜃, so we proved that BIC is satisfied. ■

We can write expected transfers as 𝔼[𝛾(𝜃𝑖, 𝜃−𝑖) ⋅ 𝑞(𝜃𝑖, 𝜃−𝑖) −𝑈𝑖(𝜃𝑖)]. Making use of the
usual integration by parts transformation, we obtain that profits are


𝑖


𝜃
𝔼−𝑖 ⒧𝛾(𝜃𝑖, 𝜃−𝑖) −

1 − 𝐹(𝜃𝑖)
𝑓(𝜃𝑖)

𝜕𝛾
𝜕𝜃𝑖

(𝜃𝑖, 𝜃−𝑖)⒭ ⋅ 𝑞𝑖(𝜃𝑖, 𝜃−𝑖) 𝑓(𝜃𝑖)𝑑𝜃𝑖. (4)

We solve the relaxed problem of maximizing profits subject to feasibility, (F). By
usual arguments, the solution to that relaxed problem is the one above. We next show
that the solution above satisfies incentive compatibility.

We start by proving 𝑞𝑖 is increasing in 𝜃𝑖 for any 𝜃−𝑖. Fix 𝜃𝑖. Let 𝑇 be the set of
opponent’s types, 𝜃−𝑖, such that 𝑞𝑖(𝜃𝑖, 𝜃−𝑖) = 1. That is,

𝑇 = {𝜃−𝑖 ∶ 𝑣(𝜃𝑖) ≥ max{𝑣𝛼(𝜃−𝑖, 𝜃𝑖) + 𝑣𝛼(𝜃𝑖, 𝜃−𝑖), 𝑣(𝜃−𝑖)}} .

Let 𝑥 be defined by:

𝑣(𝜃𝑖) = 𝑣𝛼(𝜃𝑖, 𝑥) + 𝑣𝛼(𝑥, 𝜃𝑖),

and define ̂𝑥 = min{𝜃𝑖, 𝑥}. We now prove 𝑇 = [𝜃, ̂𝑥]. Indeed, let 𝜃−𝑖 ≤ ̂𝑥. By the
second inequality in the virtual gains assumption, ℎ(𝑧) ≡ 𝑣(𝜃𝑖) − 𝑣𝛼(𝜃𝑖, 𝑧) − 𝑣𝛼(𝑧, 𝜃𝑖) is a
decreasing function of 𝑧, so 𝜃−𝑖 ≤ 𝑥 implies

𝑣(𝜃𝑖) ≥ 𝑣𝛼(𝜃𝑖, 𝑥) + 𝑣𝛼(𝑥, 𝜃𝑖).

Moreover, if 𝜃−𝑖 ≤ 𝜃𝑖, then 𝑣(𝜃𝑖) ≥ 𝑣(𝜃−𝑖). Therefore, 𝜃−𝑖 ≤ ̂𝑥 implies 𝜃−𝑖 ∈ 𝑇. The
converse follows from the same argument.

We now show prove that ̂𝑥 increases in 𝜃𝑖. For that, it is sufficient to show that 𝑥
increases in 𝜃𝑖. Indeed, by total differentiation:

⒧𝑣′(𝜃𝑖) − ⒧𝑣𝛼,1(𝜃𝑖, 𝑥) + 𝑣𝛼,2(𝑥, 𝜃𝑖)⒭⒭
>0 by virtual gains,inequality 1

𝑑𝜃 = ⒧⒧𝑣𝛼,2(𝜃𝑖, 𝑥) + 𝑣𝛼,1(𝑥, 𝜃𝑖)⒭⒭
>0 by virtual gains, inequality 2

𝑑𝑥.

Therefore, 𝑥 is increasing. Thus, if 𝑞𝑖(𝜃𝑖, 𝜃−𝑖) = 1, and 𝜃′
𝑖 > 𝜃𝑖, then 𝑞𝑖(𝜃′

𝑖 , 𝜃−𝑖) = 1,
and we proved that 𝑞𝑖 is monotonic in 𝜃𝑖.

We now show that 𝑞𝛼 + 𝑞𝑖 is increasing. Again fix any 𝜃𝑖, and let 𝑇 be the set of 𝜃−𝑖
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such that 𝑞𝛼 + 𝑞𝑖 = 1, that is:

𝑇 = {𝜃−𝑖 ∶ max{𝑣(𝜃𝑖), 𝑣𝛼(𝜃−𝑖, 𝜃𝑖) + 𝑣𝛼(𝜃𝑖, 𝜃−𝑖)} ≥ 𝑣(𝜃−𝑖)} .

Let 𝑦 be such that:

𝑣(𝑦) = 𝑣𝛼(𝜃𝑖, 𝑦) + 𝑣𝛼(𝑦, 𝜃𝑖),

and define ̂𝑦 = max{𝜃𝑖, 𝑦}. We now prove 𝑇 = [𝜃, ̂𝑦]. Indeed, let 𝜃−𝑖 ≤ ̂𝑦. Then, if
̂𝑦 = 𝜃𝑖, we have 𝑣(𝜃−𝑖) ≤ 𝑣(𝜃𝑖), and thus 𝑞𝑖+𝑞𝛼 = 1. If ̂𝑦 = 𝑦, then notice that the function

ℎ(𝑧) ≡ 𝑣(𝑧) − 𝑣𝛼(𝜃𝑖, 𝑧) − 𝑣𝛼(𝑧, 𝜃𝑖) is increasing in 𝑧 by the first inequality in the virtual
gains assumption. Thus, 𝜃−𝑖 ≤ 𝑦 implies that 𝑣(𝜃−𝑖) ≤ 𝑣𝛼(𝜃𝑖, 𝜃−𝑖) + 𝑣𝛼(𝑦, 𝜃−𝑖). Therefore,
𝜃−𝑖 ∈ 𝑇. The converse result follows from the same logic.

We now prove that ̂𝑦 is increasing in 𝜃𝑖. For that, it is enough to show that 𝑦 is
increasing. By total differentiation of the equation that defines 𝑦:

⒧𝑣′(𝑦) − 𝑣𝛼,2(𝜃𝑖, 𝑦) − 𝑣𝛼,1(𝑦, 𝜃𝑖)⒭
>0 by virtual gains, inequality 1

𝑑𝑦 = 𝑣′𝛼,1(𝜃𝑖, 𝑦) + 𝑣𝛼,2(𝑦, 𝜃𝑖)
>0 by virtual gains, inequality 2

𝑑𝜃

Again, the threshold 𝑦 grows. So if 𝑞𝑖(𝜃𝑖, 𝜃−𝑖) + 𝑞𝛼(𝜃𝑖, 𝜃−𝑖) = 1, the same holds for
𝜃′
𝑖 > 𝜃𝑖, which guarantees that 𝑞𝑖 + 𝑞𝛼 is increasing in 𝜃𝑖. We have now proved 𝑞𝑖 and
𝑞𝑖 + 𝑞𝛼 are increasing in 𝜃𝑖, and we are thus in the conditions of Lemma 4. ■
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